
32

Communicator Summer 2010

Project profile

Migrating to MadCap Flare
Adrian Morse describes how his company left the familiar
waters of Adobe products for the open seas of Flare.

The date had arrived. After countless group
discussions, numerous trials and an ongoing
effort to separate the facts from the hype, we
decided to replace Adobe’s FrameMaker with
MadCap’s Flare. Actually, it was more like
replacing ‘FrameMaker plus Acrobat plus Mif2go
plus a little bit of RoboHelp’ with MadCap Flare.
FrameMaker had long been our source. From
there we had been kicking out PDF files via
Acrobat and HTML Help files via Mif2go. It was
as close to single-sourcing as you could get: a
few clicks and we had the outputs, with no post-
editing whatsoever. The help system for one of
our products needed to be in WebHelp format; we
already had some RoboHelp (for Word) licences
so decided to just use it as a backend converter,
taking Mif2go’s HTML output and converting it to
WebHelp format. It all seemed to work well…

If it ain’t broke…
Our company had been through various
mergers, each bringing its own styles,
formats and functionality along for the ride.
Our product suite had also expanded from
client/server to browser-based applications.
Individually, the documents and help systems
were straightforward to create and they did
the job. Globally, however, it was a mess; it
looked as if we were still separate companies.
Something had to be done.

Our first step in rectifying the situation was
to decide on a common format for the help
systems, and we chose WebHelp. Besides it
being the only real contender for the browser-
based products, our experience was that users
felt more comfortable navigating such systems.

Next we had to decide on the tool. Having
experienced occasional problems creating new
projects with Mif2go, we decided to look at
alternatives rather than use it together with
RoboHelp (for HTML to WebHelp conversion).

At this stage it would have been natural to
evaluate Adobe’s Technical Communication
Suite, but our technical communicators
had had so many negative experiences with
previous attempts to integrate FrameMaker and
RoboHelp that (rightly or wrongly) the idea was
quickly dismissed. By contrast, there was some
zeal for MadCap Flare which eventually won
us over. This article describes how we took the
plunge and migrated to it.

Decisions, decisions …
We soon found out just how immense Flare is.
Coffee-room discussions overflowed with terms
like ‘snippets’ and ‘togglers’. Team members

involved with creating templates began to
look rather haggard. Others were waiting for
guidance. It became clear that the strength
that was the product’s versatility was also a
weakness for those new to it.

So what if it’s XML based?
MadCap is keen to tell us that Flare is ‘XML
based’, so that must be a good thing, right?
Well, yes, but…

As far as our final PDF and help files were
concerned, it did seem that Flare could
not really ‘do’ anything that our previous
combination of tools could not; it just achieved
the same end result by different means. For
example, applying a format to a paragraph
became applying a tag to an XML element,
opening the table catalog became opening the
table style sheet.

For XML or DITA outputs, there are likely
advantages to authoring within XML itself but
for us this did not seem to make a difference.
Sure, we could look at the XML behind a topic
but we only really had cause to do so when
trying to distinguish a bug from ‘by design’
behaviour.

Perhaps one exception to this observation
is the ability to easily apply DIV tags across
multiple paragraphs in a topic. As well as
being needed for dynamic HTML effects, DIV
tags offer a way to control the look of sections
rather than individual paragraphs or entire
topics. For example, you can easily apply a
coloured background to selected text (Figure 1).

What’s up doc?
The first time we opened a Flare project we
were hit by an ‘okay, so now what do I do?’
feeling. In fact, for the first few weeks, it
happened pretty much every time we opened a
project. However, the situation improved after
we had assimilated the following:
1. We were accustomed to seeing a FrameMaker

‘book’, in which the main sections of the
document or help system were clearly
visible. It took a while to realise that the
Flare TOC was now the first port of call. It is
a little irritating that the TOC does not open
by default but this can be mitigated to some
extent by configuring Flare to reload open
files when you open a project.

2. We were accustomed to working with a
dozen or so filenames in a logical order. In
contrast, our Flare projects typically had
well over 100 files ordered alphabetically
with no indication of where they slotted into

33

Communicator Summer 2010

the document… welcome to topic-based
authoring! The granularity of files was
driven by the look and feel we wanted in the
help system. MadCap’s suggestion of ‘make
every topic self-contained’ sounds like good
advice and would certainly have reduced
the file count, but it did not really work for
us. Anyway, despite the paradigm shift in
the way of working, a few months down the
line and the technical communicators didn’t
really bat an eyelid anymore. They just made
sure to link any new file to the TOC as soon
as it was created.

Drag-and-flop
Getting to grips with Flare was made harder
by minor annoyances in the interface. I use the
word minor because the issues we hit had easy
workarounds. Here are a handful of quirks to
expect:

Drag and drop can sometimes be a little �
tricky. If you select a whole line of text but do
not include the carriage-return symbol you
can drag the selection and drop it elsewhere,
such as within another paragraph. However,
the carriage-return symbol sometimes gets
selected automatically right at the moment
that you attempt to drag the selection. Flare
then decides that you are trying to drop
one XML element inside another, which is
prohibited and so the ‘drop’ fails. Nothing
that Ctrl-X and Ctrl-C won’t sort out though.
To insert a paragraph above a heading you �
put the cursor in the heading, press Home
to move the cursor to the start of the line
and then press Enter, right? Wrong! If you do
this, the heading’s tag changes to a <p> tag
and you have to reapply the heading. This
annoying behaviour only seems to happen
with headings. For example, if you use this
method to add a new paragraph above
a bulleted item, the bullets are retained.
Fortunately, there is an alternative: after
pressing Home, you can press ↑ (which makes
the cursor horizontal above the heading)
before you press Enter.
You can copy the contents of one table �
cell and paste them into another, but you
cannot paste the contents of a single cell into
multiple cells at once.

Spoilt for choice
Getting started with Flare can be quite daunting
due to the proliferation of options at every
stage. Here I describe some of the key choices
we found ourselves making. They are presented
in order of importance. This information by no
means covers all functionality available in Flare,
just the main areas where decisions are needed.

Source?
Our first big decision was whether to author
entirely within Flare or continue with

FrameMaker and just import into Flare in order
to create the help output. Our decision was
primarily influenced by two factors:

We wanted to come as close to a 100% single- �
sourcing workflow as we could.
We wanted to be able to take advantage of �
Flare’s great features for adding dynamic
HTML effects (such as drop-down text or
popups).
There then followed the usual group

discussions about what 100% single sourcing
means. We concluded that it meant the ability
to make changes in the source and create
immediate outputs without any post-editing
of the outputs being needed. This ruled out
authoring within FrameMaker since dynamic
HTML effects added in Flare after importing
from FrameMaker would need to be recreated if
the source was later changed and reimported.

PDF output from Flare… are you serious?
Flare v3 did not have support for directly
creating PDF files, so we initially output to
FrameMaker and then generated PDF files from
there.

When support for PDF was added in version 4,
we were very sceptical. MadCap were new
players in the field and we could not see how
they could compete with the very company that
created PDF technology. We needn’t have been
concerned. PDF files from Flare looked great.
A month down the line and we had completely
recreated our templates, bypassing FrameMaker
and Acrobat completely.

Lists
Out of the box, Flare lets you apply bullets and
numbered lists to text using the drop-down
control on the toolbar. In the background,
and tags are applied. Our next decision
was whether to use these innate list styles or
create our own auto-numbered styles (just as in
FrameMaker).

You can get a long way with the innate tags
but they have their limitations. For example,
they cannot show chapter, section or volume
numbering and they cannot be used with
custom bullets. You also need to restart new
lists manually and there is no inherent ‘control’
over what type of bullets or numbers each
technical author on a team uses. Autonumbered

Figure 1. A DIV tag class applied to text. In the CSS, this class is configured to give
a blue background.

34 Project profile

Communicator Summer 2010

styles do not suffer from these deficiencies, so
we decided to use them instead.

At this stage, we could have created the
autonumbered styles as CSS classes for the
ordered list tag. For example, ol.numbers
(where ol is the tag and numbers is the class).
Instead, we chose to create them as classes for
the <p> tag (that is, p.numbers). Why? Well,
some windows and controls in Flare only show
classes that are pertinent to the selected style.
For example, suppose you are editing a list
item and want to change its style to a certain
paragraph class. You are not able to select
the paragraph class from a drop-down list of
styles because the list will only show classes
appropriate to list tags (such as li.bullet). So you
first have to remove the list tag, adding extra
steps to the operation. On the other hand, if you
stick to paragraph classes for all styles, you will
always have both list and non-list styles within
easy reach. There is nothing about list classes
that you cannot achieve through a suitably
configured paragraph class.

The project TOC
It is useful to distinguish a ‘project TOC’ from
a ‘print TOC’. A project TOC determines the
topics that will be included in the output, their
order and hierarchy. For help outputs, the
project TOC corresponds with the actual TOC
seen in the resulting help system. By contrast,
in print outputs it is the print TOC that appears
rather than the project TOC.

A project can have one or more project
TOCs. When you build an output you define the
project TOC to use. For printed outputs, the
project TOC needs an entry for a cover page, a
print TOC ‘proxy’ (a placeholder for the print

TOC) and an index as well as entries for topics
(Figure 2).

Decision time again. Should we create the help
and PDF outputs from two different project
TOCs? Or should we stick with one project
TOC but use ‘conditions’ to hide any print-
related entries when creating a help output?
(For instance, the condition ‘print only’ could
be applied to the cover page entry to exclude it
from the WebHelp.)

As far as the end product was concerned
both strategies were the same. However, taking
maintainability into account, we decided to use
a single TOC with conditions. In our case, most
content updates were likely to affect both print
and help outputs. Having one TOC meant that
we would only have to link the TOC to a new
topic once. Using two TOCs would have meant
linking each new topic twice and there was a
risk of inconsistency between the TOCs.

The print TOC
There are two ways to create a print TOC:

Replicate the structure seen in the associated �
project TOC
Define the styles that you want to be TOC �
entries (for example, all H1s and H2s).

Basing the print TOC on the project TOC has the
advantage that you can instantly see how your
TOC will look. However, we decided to go for
the option of using styles because it effectively
encourages consistent formatting for the
same heading level. For example, if you want
a heading to appear at the usual H3 level, you
must apply a H3 style to it.

Table styles
You can apply styles to tables either by using
table stylesheets or by applying <table>, <td>,
<tr> and <th> tags or classes from the usual
project stylesheet (there can be issues if you try
to mix the two).

We opted for table stylesheets for the
following reasons:

It’s easier to create tables with them. �
You can tab to add a new row. �
It’s easier to set up alternating row formats. �
They avoid a bug that occurs when ‘undoing’ �
a <tr> style application.

That said, table tags or classes can be needed
for complex tables so perhaps a common-sense
approach would be to set up table stylesheets
initially and only create table classes if a
particular situation calls for them.

Then there are indented tables that you might
need for lists or other situations. Again, you
have a choice to make: either create an indented
table style or use an existing table style but edit
the left margin after applying it. We decided to
create specific styles because margin edits are
not retained if a table style is reapplied or if an
additional table style for print output is later
applied to the table.

…the whole
program is oriented
around the concept
of a single stylesheet

Figure 2. A ‘project TOC’ with ‘print only’ conditions applied to the cover and
copyright page, TOC and index

35

Communicator Summer 2010

Localising WebHelp skins
The method for localising a WebHelp ‘skin’
depends on whether the English skin uses
default text or has been customised. If it uses
default text, you just need to substitute the
skin provided for the appropriate language.
However, if your English skin has custom text
(for example, if you change the tooltip for a
button on your WebHelp toolbar) and you want
the tooltip to be localised too, another approach
is needed. You have these options:

Customise each language skin to match the �
English skin changes. One difficulty here is that
language skins are stored under the ‘Documents
and Settings’ folder for each user (that is,
outside the Flare project folder). So you have
to remember to include this file when sending
the project for localisation and the localisation
agency needs to make sure they place the file in
the expected path for each user.
Forget language skins and just use a a copied �
and renamed version of your English skin. If
you do this, you must remember to change the
skin link in the target for each localised project.

Stylesheet policy
Flare lets you use the same stylesheet for
different outputs or specify a different
stylesheet for each output. This one was a
no-brainer: the whole program is oriented
around the concept of a single stylesheet with
‘print’, ‘non-print’ and ‘default’ media sections.
You link each output to the medium you want.
(For example, you would link a PDF output to the
‘print’ medium.) When using a single stylesheet
in this way, Flare enables you to see easily how a
topic is going to appear for each output and the
effort needed to maintain styles is reduced.

We found it best to avoid using the ‘non-print’
medium and instead define all styles in the
‘default’ medium section of the stylesheet first,
with the ‘print’ media section just being used
for any changes from the default. This ensures
that all styles are available regardless of the
media set for viewing and it also makes it easier
to configure new styles.

We also found it to be a good idea not to set
a default font size for the <p> tag but instead
set a default font size for the <body> and
<td> tags. It meant that we could set our <p>
styles to drop down a font size automatically
when used inside tables, avoiding us having to
create a whole set of styles for use in tables. For
example, our p.Bullets style normally appears
with a font size of 10pt, but when used in a
table it automatically becomes 9pt.

Policy for resizing screenshots
As well as Flare, we also purchased MadCap
Capture for working with screenshots. Flare
alone offers various ways to resize screenshots:
throw Capture into the mix and you have even
more options, which can get a little confusing.

We needed a policy.
We first spent time testing the quality of

images that we had reduced in size and noted
that some resizing methods worked better than
others. We looked at both PDF and help outputs.
Our expectations for the quality of resized
images in PDFs were high but we did not expect
to see high-quality resized images in help output,
since any reduction necessitates a loss of pixels.
However, we were pleasantly surprised. With
our previous workflow, we could only achieve
acceptable results by making sure that any
screenshots in the HTML output were recreated
at their original size. They were crisp and clear
on screen, but the larger screenshots could be
overbearing. With Flare, this wasn’t necessary. As
long as the option Generate copies of resized
images was selected we could reduce screenshots
down to about 65% of their size and still find
them acceptable in the help file. As Flare does not
claim to be a graphic editing tool, we found this
remarkable. It opened the door to using the same
image dimensions for both PDF and help outputs
for the majority of images. Doing this wasn’t
strictly necessary, as Flare allows you to specify
separate dimensions for online and print output,
but it certainly made things easier.

As for how to resize, the following methods
are available in Flare:

Dragging an image’s borders �
Setting dimensions for an image �
Setting maximum and minimum image �
dimensions for all images in the project using
the stylesheet.
We found that all methods produced good

results. However, you cannot size an image
by a scale factor or DPI in Flare; if you want
to do that, you have to calculate and enter the
dimensions yourself. Or you can use Capture.
We observed that the Print DPI setting in
Capture worked well but the Print Size setting
(which one would assume should be reciprocally
linked to the Print DPI setting) did not; it gave
a low-quality image. In Flare, as I mentioned
previously, we could set the same dimensions
for online and print outputs in one place and
get good quality outputs. In Capture, this did
not work: the quality of the online image was
as expected but images in the PDF output were
of poor quality. Print settings always had to be
specifically configured in order to get a good-
quality image.

Because of these issues, we decided to do
all resizing in Flare rather than Capture. We
maintain a consistent scale factor by calculating
the image dimensions we need manually. A
handful of large screenshots do not look good
in the PDF output when scaled by the factor
needed for the online help. To cater for such
situations we set a maximum print image width
of six inches in the stylesheet.

I should add that MadCap has made ongoing
improvements and changes in the handling of

36 Project profile

Communicator Summer 2010

images. After each new release, we run tests
again and revise our policy as necessary.

Use of variables
The big decisions were behind us. Most choices
ahead were typical of any tool, not just Flare, so
I will just comment on a few of them.

First are variables (Figure 3). To make
maintenance and localisation easier, we used
variables for headers rather than direct text in
the ‘page layouts’ (equivalent to master pages
in FrameMaker). However, we decided against
using variables for text on cover pages because
you cannot manually control line breaking
within a variable and this could have led to
localisation issues in languages such as German,
where the text length would be expected to
increase significantly.

Use of conditions
Conditions can be applied to individual
letters, words, sentences or entire paragraphs.
A policy was needed to ensure consistent
usage. The localisation agency asked that we
apply conditions only to entire sentences or
paragraphs, not to individual words (with the
exception of table headings). We get some
repetition of source content this way, but it is
easier to work with.

We also decided that conditioned paragraphs
should include the paragraph mark at the end.
(If it is included in some cases but not others,
outputs might have sentences running into each
other or empty paragraphs.) The important
thing here was consistency; a policy of leaving
out the paragraph mark would have been
equally valid.

FrameMaker features we miss
Automatic markup
Start typing in FrameMaker and you can see
a bar in the margin next to any text that has
changed. Change bars are visible in the PDF
output; this enables us to use an Acrobat shared
review process, which we need for regulatory
purposes and which reviewers seem to love.

Flare, on the other hand, offers the technical
communicator a way to see the differences
between a topic and an earlier backup of
it but reviewers cannot see this view. As a
workaround, we apply highlighting manually to
mark text that has changed before generating
the PDF file. This is laborious and error-prone.

Find/replace capabilities
Find and replace in Flare can be confusing as
there are two similar windows for this purpose.
Searching in one window creates a list of topics
that contain the search term; searching in
the other opens the next topic containing an
occurrence of the search term.

Besides the comparative simplicity
of FrameMaker’s Find/Change window
functionality there is also a noticeable
difference in search options. Flare does not
offer searches such as the following that can be
found in FrameMaker:

Character tags (spans in Flare) �
Paragraph tags (tags and classes in Flare) �
Character formats (such as italic and bold �
together)
Any cross-reference �
Cross-reference of format �
Unresolved cross-reference �
Any table �
Table tag (a particular table style in Flare) �
Conditional text �
Anchored frame (just images in Flare). �

You can search for some of these entities in
Flare by searching in the source code for the
tags you expect but this is undocumented and
rather risky, especially for ‘replace’ operations.
For some searches across topic files, we
therefore find ourselves resorting to FrontPage.

It should be said that you can generate certain
reports including the following:

A list of topics that contain images �
For each image, a list of topics in which it is �
used
A list of topics in which a condition is applied �
to text (but with no indication of what the text
or the condition is — this could be a bug)
For each variable, a list of topics (and �
templates) in which the variable is used.

However, these reports only list file names and
do not provide the context in which the entity
is found. That wouldn’t be so bad if the entries
were hyperlinked but they are not (for that you
need the MadCap Analyzer add-in).

Ease of inserting rows and columns in tables
Inserting a single row or column in Flare is easy
enough but you cannot insert multiple rows or
columns from the right-click menu. To do this,
you need to use the Table Properties window
and you do not have control over where the
rows or columns are placed.

Flare features we couldn’t do without
Here I will discuss some features that did not
exist in our previous Frame plus Mif2go setup.

Global Project Linking
Compared with FrameMaker, maintaining styles
in Flare projects is a walk in the park. No risk
of users selecting the wrong format import
options. No obsolete styles hanging around

Compared with
FrameMaker,
maintaining styles
in Flare projects is a
walk in the park

Figure 3. A variable used in the footer of a page layout.

Adrian Morse is
Documentation
Manager at Picis, a
US-based provider
of information
solutions for delivery
of clinical, financial
and operational
results in hospitals.
He is responsible for
documentation and
help files, and for the
people who work on
them. His background
is scientific: he holds a
PhD in Applied Physics
and worked as an
electrical engineer and
later as a lecturer at
Manchester University
before becoming a
technical communicator
in 1997. He is an
advanced user of
FrameMaker and Flare,
and has also been
involved in numerous
localisation projects
(he is fluent in Spanish).
E: Adrian_Morse@picis.
com
W: www.linkedin.com/
in/adrianmorse

37

Communicator Summer 2010

afterwards. No need for FrameScript add-ins to
help you out. Yes, definitely a walk in the park.

To make that walk even more pleasant, Flare
offers a feature called Global Project Linking.
This enables you to have templates propagated
to all Flare projects in your workplace from a
central location. You can also use Global Project
Linking for sharing topic files between projects
automatically… as soon as Mary updates the
‘Basic Computing Skills’ topic, Dave and Alan
see it updated in their user guide projects! Cool.

Ease of adding dynamic HTML effects
It was possible to add dynamic HTML effects
(such as expanding text and popups) using our
previous workflow of FrameMaker plus Mif2go.
However, it meant adding raw HTML code to
markers inside FrameMaker, so wasn’t the most
user-friendly of methods. In contrast, Flare has
great functionality for adding such features.
We particularly like ‘togglers’, a feature that
lets you show and hide entire sections within
your topic (and they don’t even have to be
contiguous).

Integration with Capture
Whenever you create or open a graphic file in
Capture it creates a properties (.props) file in
the same folder. If you add callouts to an image
they get added directly to the image file (for
example, to the PNG file). However, the props
file effectively contains the original graphic plus
all the changes that have been made. So, when
you open an image file in Capture any callout
that you added is an editable layer rather than a
merged and uneditable part of the graphic.

This is a clever design. It means that to edit
callouts in a graphic that is part of your Flare
project you just need to right-click the graphic
in the Flare topic, select Edit with MadCap
Capture, edit the callouts and save the file.
In contrast, if you want to edit the callouts in
another graphics editor, you have to maintain a
separate ‘master’ version of the file for future
editing and save any updated image file into the
Flare project.

The support
A discussion of MadCap Flare would not be
complete without reference to the fantastic
support available for it. You can easily submit
bug reports and enhancement requests through
the MadCap website. This is not like sending
information into a black hole; unlike some other
vendors, MadCap goes to great lengths to listen
to its customers and act on suggestions.

Besides MadCap’s own support system
there is a vibrant and extremely helpful user
community at http://forums.madcapsoftware.
com/index.php. Common words (such as CSS)
are ignored in forum searches but we found
that you can work around this by searching
with Google (use www.google.com/advanced_

search?hl=en and enter
‘forums.madcapsoftware.
com’ in the Search within a
site or domain field).

Conclusion
Although we have made
a few sacrifices along the
way (notably the loss of
automatic markup), our
migration has gone well.
Setting up templates took
longer than we expected due
to the numerous and often
interconnected decisions
needed. The steepness of
the learning curve was also
a bit of a shock. However,
the technical communicators
in the group are now quite
confident with Flare and
can quickly turn out new
projects. What’s more, with
regular product updates
and MadCap’s engagement
with the customer, we really
feel we have invested in a
product with great potential.
We look forward to what the
future brings.

A parting word of advice to
potential users? Flare is an
ocean of possibilities… focus
on replicating the familiar
territory of your existing
help system before sailing
off into uncharted waters! C

Sessions include:
Social Web Strategies for Documentation
Future User Assistance Trends
The Wonders of SVG
Comparison of Help Authoring Tools
Developing a Content Strategy
Optimising the “Googleability” of Your

User Assistance
Case Study: Design of User Assistance

on Mobile Enterprise Applications
What Kind of Assistance Do Users

Really Need?
Climbing the Levels of Collaboration
Writing for Readers Who Can't Read
Optional DITA track includes:
Update on DITA Tools and Best Practices
Case Study: Using DITA to Implement

Writing Patterns for User Assistance
Single-sourcing Tooltips from DITA

Full Conference Details and
Registration:

www.uaconference.eu
+44 (0)844 504 2521

Matthew Ellison
Consulting

Keynote speaker:
Anne Gentle,

author of the popular
book Conversation
and Community:
The Social Web for
Documentation

Other speakers include:
Matthew Ellison
Tony Self
Joe Welinske

Conference venue:
The superb Clarion Hotel Stockholm is
located just a few minutes walk from the
Gamla Stan (Stockholm's Old Town).

The Conference for
Software User Assistance
Professionals

16-17th September, 2010
Stockholm, Sweden

Representatives

from Oracle, Red
Gate Software,
LogMeIn, Inc.

AdrianLocal
Rectangle

	Communicator Summer 2010 proof 32.pdf
	Communicator Summer 2010 proof 33
	Communicator Summer 2010 proof 34
	Communicator Summer 2010 proof 35
	Communicator Summer 2010 proof 36
	Communicator Summer 2010 proof 37

