Enhancing Your MadCap Flare
Skills with Regular Expressions

PRESENTED BY

Jenny Pittman, Sr. Technical Writer, BeyondTrust

2

PREVIEWS OF COMING ATTRACTIONS

 What is a regular expression?

« Why would I want to use regular expressions?

« How has BeyondTrust has used regular expressions?
« How do regular expressions work?

« What are best practices for using regular expressions?
« What if | want to go even deeper?

What Is a regular expression?

- WHAT IS A REGULAR EXPRESSION?

« “Aregular expression is a pattern that the regular
expression engine attempts to match in input text. A
pattern consists of one or more character literals,
operators, or constructs.”

https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference

- AGAIN, WHAT IS A REGULAR EXPRESSION?

« Away to search for a range of characters

« A way to search for “this or that”

« A way to limit your search to “this but not that”
« A way to limit your search to “this if that”

regex or regexp

|
- BE AWARE!

« This presentation gives examples for MadCap Flare’s
regex parser.

« Other software programs may use different parsers.

« For our purposes, a parser has nothing to do with a
parsec.

Why use regular expressions?

I REFINE THE SEARCH

 Standard search finds content based on:

— Words or phrases <h1>Introduction</h1>
T EMadcaprendronaeds o)
L ’ ’ <h2>Intro</h2>
<MadCap:conditionalText>, etc.) L

<hl class="red">Intro</h1>

— Attribute (style, class, condition, etc.)
* Regex search finds content based on:

— Multiple factors (this text in this <h\d[">]>Intro(duction)?</h\d>

or that element with this attribute) :
o _ _ <hl1>Introduction</h1>
— Beginning, middle, or end of the line BN IraArs
— Beginning, middle, or end of the topic EUEREEEEERTE R llT{eis KE

I EXPAND THE REPLACE

« Standard search replaces x with y

 Regex search can:
— Modify or remove tags while keeping the content
— Modify or delete text that may be formatted in multiple ways
Note:, Notes, Note:
— Replace some but not all instances of a word

Change “blue” to “red” unless part of the word “blueprint”

How we've used regexes

THE LEGEND OF REGEX

Find text

"= Find and Replace in Files v I x

-

Replace with text

The original text

Find:
P ="M\ N-BLIADESMNN 1 TN

Replace with:
<\1\2 MadCapconditions="3\4"5\6> |

The text after find and replace

Set the search to Regular Expressions

Find in:
{content folder) e

File types:
htr flsnp V

@ Find Options
[] Match case
[] Whale waord
Find in source code

Search type:
I Regular Expressions - I

' GET RID OF HARD-CODED NOTES

* Modified our stylesheet to automatically include “Note:”
and “Important!”

« Used regex to delete hard-coded text

<(b|strong)>Note(|)*(<N\1>)?(|)*\:(<\1>)?(|)*(<N\1>)?

<p class="note">Note: Be sure to drink your Ovaltine.</p>

<p class="note">Be sure to drink your Ovaltine.</p>

. MAKE SIMPLE COMMANDS BOLD

« Bolded one-word, unformatted “click” commands
(c|O)lick(ing)? (the)?(OK]|Add|Edit|Close|Next|Save|Delete|Enter)(button)?

\1lick\2 \3\4\5

Click OK, then finish by clicking the Close button.

Click OK, then finish by clicking the Close button.

' MAKE EACH TOPIC’S FIRST LINE AN H1

* Replaced starting paragraphs, H2s, and H3s to satisfy
SEO needs

(<body>\s*)<(p[h[*1])(["*>]*)>(-*)<N\2>

\1<h1\3>\4</h1>

<h2 class="style">Header Text</h2>

<hl class="style">Header Text</h1>

REMOVE OR CHANGE ATTRIBUTES: OUR PROCESS

Version 18.2

Public Portal Schedule

<Added-19-1>

Recently Used
Jump Items!

. N\ N
\; <Deprecated-18-2> <Added-18-2>
S i
Z Public Portal Public Portal Schedule!
9 Always On
ST N

' REMOVE OR CHANGE ATTRIBUTES

* Modified classes, styles, conditions, and other attributes

<(w+ 2w 2)((7: (22 wH2Aw) ="M 2)%) MadCap:conditions="([Ww\.\-,
1%)(?:,?Release\.Added\-RS\-18\-2,?)([\WW.\-,]*)"((?: (?:\w+:2\w*)="["]*"
2N(/1)>

<\1\2 MadCap:conditions="\3\4"\5\6>

<p MadCap:conditions="Release.Added-RS-18-2,Default.PrintOnly">

<p MadCap:conditions="Default.PrintOnly">

How do regular expressions work?

Special Characters

and their
Superpowers

\ () [] 1}

| - <>

To use any of these as a literal, you
must precede it with a backslash!

 To search for an asterisk:
 To search for a backslash:

ABC’S AND 123’S

« To search for any letter, number, or underscore:
« To search for a space, tab, or line break:

This does not search for non-breaking spaces, coded in Flare as

« To search for any character except newlines, use a dot:
« To specifically search for any number:

» To specifically search for a tab:

» To specifically search for a line break:

I IT’S A GROUP EFFORT

« Group and capture with parentheses ()
— Searches for a string as a single token

— Treats (cat) as one single search term that cannot be broken up;
finds cat, catalog, and concatenate but not act

— Used with repetition and backreference

* Find this or that with (|)
— Use (cat|dog) to find either cat or dog

- CAPTURE THE FLAG (OR DON’T)

« Use backreference to find the same captured group twice
— Use to find : , etc.
— Use to find

« Use backreference in the replace field to keep a captured
group as it was found

— Find and replace with to replace
with spice and sugar (or with
oranges and apples)
* Group but don’t capture with to keep your

backreference from exceeding the Flare limit of 9

- PICK A CARD, ANY CARD

« Find any matching character with square brackets
— Called a character class or character set
— Find any letter or number:

Unlike some parsers, Flare is not case-sensitive unless you check Match
case in the Find options.

— Find any letter between a and n:
— Find any vowel:

By itself, searches for only one instance.

I BUT NOT THAT CARD

* Find text that does not contain any specified character [|
— Find cat or cast but not cart: cal”r|?t
— Find cat but not cast or cart: cal rs|?t

* Find text that does not contain a specified string (7!)
— Find The book was great but not The movie was great: The
(?!movie)\w+ was great

— Find | love ice cream sandwiches or | love tomato sandwiches but
not | love tomato tofu sandwiches: | love (?!tomato tofu)[\w |*
sandwiches

' SET BOUNDARIES

« To define the beginning or end of a word:

Use two to duplicate Flare’s built-in Whole word search option:
finds cast but not castle or podcast.

Use one to define only one side of the word boundary: finds cast
and castle but not podcast, while finds cast and podcast but not
castle.

» To define the beginning of a line:
» To define the end of a line:

i SMALL, MEDIUM, OR LARGE?

* Find the character or group 0 or 1 times: ?
— Use If's (not)7raining to find both It's raining and It's not raining

* Find the character or group 1 or more times: +
— Use ho+p to find both hop and hoop (and hooooooooooop)

* Find the character or group O or more times: *

— Use I'm [\w [*ready to find both I'm ready and I'm almost ready
(and I'm definitely almost certainly ready)

. WOULD YOU LIKE TO SUPERSIZE THAT?

* Find the character or group exactly x times:
— Use to find hoop but not hop (or hooooooooooop)

* Find the character or group at least x times but no more
than y times:
— Use to find Psycho but neither Jaws nor Casablanca

Another look at the examples

GET RID OF HARD-CODED NOTES

¢ < >Note(|)* (|)*\: (
|)*

* Find or
* Find zero or more spaces
* Find or

 Why not use \2 for the second instance of ?

« Once a capturing group has been found the first time, all
backreferences equal that text

MAKE SIMPLE COMMANDS BOLD
lick (OK|Add|Edit|Close|Next|Save)

lick \4
* Find : , , Or
* Find zero or one instances of
« Find OK, Add, Edit, or another specified word
* Find zero or one instances of

MAKE EACH TOPIC’S FIRST LINE AN H1

< (["=>]9)>00 <\2>
<h1l\3>/</h1>
* Find the tag followed by
 Find p or any tag that is not h1l

 Find zero or more characters that are not >
 FInd
« Find the closing p or tag

REMOVE OR CHANGE ATTRIBUTES

<(\w+:?2\w* ?)(\W:2\wW*)="""*" ?2)*) MadCap conditions="
(’PReIease\ Added\-RS\-18\-2,?)
W 2w =TT 2)%)([/]%)>
<\1\2 MadCap:conditions="-'/1"\5\6>
Find any opening tag, including MadCap:x tags
(still captured as part of the larger

group)
Find zero or more attributes, including MadCap:x attributes, with a
definition including any characters other than "

Find
Find the condition Release.Added-RS-18-2, optionally preceded or
followed by a comma

Find the closing bracket, preceded by zero or more slashes or spaces

Top tips!

TESTING, 1, 2, 3

« Test, test, test — that Is,

« Commit to source control regularly throughout

* Regular text search to see how many results to expect

* Find with regex and check that results count isn't too high
* Find/replace a few with regex to make sure replace works
« Use In-topic find/replace to see where the regex is broken
* Find/replace all with regex and compare results count

« Commit, then regular text search to find unchanged files

« Update the regex and repeat the process

BONUS TIP!

Fé ind a ace in Files v 1 x
. Regex searches can take a long e
Ume to run o) ="M A-B AR\ T T T = -
Replace with:
° TO CUt down processing time’ q12 MadCap:conditions="3\4"\5\6>
specify which file types to search [comeme
In the File types box Fle ypes:
“htrm* flsnp
« With Find in, pick a folder to () Find Options
break big searches into smaller e
C h u n kS rl::i:l:tl;ges:ource code
Regular Expressions

« Remember your

The Really Complex Stuff

- LOOKIN’ AHEAD

« Find the character or group only if it's immediately
followed by what's in the parentheses:
— Use to find super but not superpower

* Find the character or group only if it's not immediately
followed by what’s in the parentheses:
— Use to find super but not superhero

- LOOKIN’ BEHIND

« Find the character or group only if it's immediately
preceded by what's in the parentheses:
— Use to find ware but not hardware

* Find the character or group only if it's not immediately
preceded by what's in the parentheses:
— Use to find ware but not software

- IFS, ANDS, AND BUTS

e |fais true, find b; otherwise, find c:
e Given aircraft, airtime, watercraft, lifetime:

— Use to find air and life
* Find if it's immediately preceded by air; otherwise, find
— Use to find water and air
* Find if it's not immediately preceded by air; otherwise, find
— Use to find aircraft and lifetime
* Find air if it's immediately followed by ; otherwise find
— Use to find airtime and craft

* Find air if it's not immediately followed by ; otherwise find

Try 1t out!

TRY IT: SWITCH REGULAR TEXT TO A VARIABLE

Your project uses the word "yarn" throughout.
One user needs "fiber" instead, and another "wool".

You've created two variables: [%=Variables.yarn%]| and
[%=Variables.Yarn%].

How do you replace "yarn" with these variables?

Tip:

Instead of using the XML editor default of <MadCap:variable
name="Variables.Yarn" /> you can use [%=Variables.Yarn%], the code

format. While this doesn't show the definition in the WYSIWYG, it renders
correctly in the output, and it makes find/replace far easier.

' TRY IT. CHANGE A HEADER TYPE

* Your project has topics that use H3 as their first header.
* Your webmaster says these must all be switched to H1.
* You've created a new style called h1.h3style.

 How do you replace H3s at the beginning of the topic but
not in the middle?

i TRY IT: FIND EMPTY AND MISSING ALT TAGS

* Your webmaster wants all image alt text to be between 12
characters and 16 words.

* You suspect that many images have either:
— Nothing between the quotation marks
— Too-short or too-long descriptions

 How do you find errant images? (may take two searches)

SOURCES

o https://journalxtra.com/linux/bash/reqular-expressions-a-
guick-guide/

» https://thenewstack.io/dont-fear-regex-getting-started-
reqular-expressions/

o https://www.rexeqq.com/
o https://www.regular-expressions.info/tutorial.htmi

* https://docs.microsoft.com/en-us/dotnet/standard/base-
types/reqular-expression-language-quick-reference

https://journalxtra.com/linux/bash/regular-expressions-a-quick-guide/
https://thenewstack.io/dont-fear-regex-getting-started-regular-expressions/
https://www.rexegg.com/
https://www.regular-expressions.info/tutorial.html
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference

