
AltovaXML 2008

User and Reference Manual

All rights reserved. No parts of this work may be reproduced in any form or by any means
- graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered
trademarks of the respective owners. The publisher and the author make no claim to
these trademarks.

While every precaution has been taken in the preparation of this document, the publisher
and the author assume no responsibility for errors or omissions, or for damages resulting
from the use of information contained in this document or from the use of programs and
source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have
been caused directly or indirectly by this document.

Published: 2008

© 2008 Altova GmbH

AltovaXML 2008 User & Reference Manual

1AltovaXML 2008

Table of Contents

1 Introduction 3

... 41.1 Product Features

... 51.2 Available Functionality

... 61.3 System Requirements and Installation

... 71.4 About this Documentation

2 Usage 10

... 112.1 Command Line

... 13XML Validation and Well-Formedness 2.1.1

... 14XSLT 1.0 Transformations 2.1.2

... 15XSLT 2.0 Transformations 2.1.3

... 17XQuery 1.0 Executions 2.1.4

... 192.2 COM Interface

... 20Registering AltovaXML as a COM Server Object 2.2.1

... 21AltovaXML Object Model 2.2.2

... 22Application 2.2.3

... 23XMLValidator 2.2.4

... 25XSLT1 2.2.5

... 27XSLT2 2.2.6

... 29XQuery 2.2.7

... 32Examples 2.2.8

... 32Visual Basic

... 33JScript

... 34C++

... 362.3 Java Interface

... 38Interfaces 2.3.1

... 38IAltovaXMLEngine

... 39IAltovaXMLFactory

... 39IExecutable

... 40IReleasable

... 40IXMLValidator

... 42IXQuery

... 44IXSLT

AltovaXML 20082

... 45Classes 2.3.2

... 45AltovaXMLFactory

... 46XMLValidator

... 49XQuery

... 52XSLT1

... 55XSLT2

... 582.4 .NET Interface

... 60General Usage and Example 2.4.1

... 62Altova.AltovaXML.XMLValidator 2.4.2

... 64Altova.AltovaXML.XSLT1 2.4.3

... 66Altova.AltovaXML.XSLT2 2.4.4

... 68Altova.AltovaXML.XQuery 2.4.5

... 712.5 Explicitly releasing AltovaXML COM-Server from C# and VB.NET

3 Engine Information 74

... 753.1 Altova XML Validator

... 763.2 XSLT 1.0 Engine: Implementation Information

... 783.3 XSLT 2.0 Engine: Implementation Information

... 79General Information 3.3.1

... 81XSLT 2.0 Elements and Functions 3.3.2

... 823.4 XQuery 1.0 Engine: Implementation Information

... 853.5 XPath 2.0 and XQuery 1.0 Functions

... 86General Information 3.5.1

... 88Functions Support 3.5.2

... 913.6 Extensions

... 92Java Extension Functions 3.6.1

... 95Java: Constructors

... 95Java: Static Methods and Static Fields

... 96Java: Instance Methods and Instance Fields

... 97Datatypes: XPath/XQuery to Java

... 98Datatypes: Java to XPath/XQuery

... 99.NET Extension Functions 3.6.2

... 100.NET: Constructors

... 101.NET: Static Methods and Static Fields

... 102.NET: Instance Methods and Instance Fields

... 102Datatypes: XPath/XQuery to .NET

... 103Datatypes: .NET to XPath/XQuery

... 104MSXSL Scripts for XSLT 3.6.3

3AltovaXML 2008

4 License Agreement 108

Index

Chapter 1

Introduction

© 2008 Altova GmbH

 3Introduction

AltovaXML 2008

1 Introduction

AltovaXML 2008 is an XML application package which contains the Altova XML Validator,
Altova XSLT 1.0 Engine, Altova XSLT 2.0 Engine, and Altova XQuery 1.0 Engine. The package
is available, free of charge, as a single installer file from the Altova website. AltovaXML can be
used to validate XML documents, transform XML documents using XSLT stylesheets, and
execute XQuery documents.

AltovaXML can be used from the command line, via a COM interface, in Java programs, and in
.NET applications. This documentation describes the usage of AltovaXML in all these
environments, and also lists implementation-specific aspects of the engines in the package.

http://www.altova.com/download.html

4 Introduction Product Features

© 2008 Altova GmbHAltovaXML 2008

1.1 Product Features

The main features of AltovaXML are as follows:

Package

 XML Validator, XSLT Engines, and XQuery Engine packaged as a single installer file.
 Installer file available for download from Altova website free-of-charge.
 Easy installation of executable files on Windows systems.

Command line

 Command line usage for validation, XSLT transformation, and XQuery execution.
 Validation of XML documents according to DTD and W3C XML Schema rules.
 Transformation of XML documents with XSLT 1.0 and XSLT 2.0 stylesheets in

conformance with respective W3C specifications.
 Execution of XQuery 1.0 documents in conformance with W3C specifications.

COM interface

 Can be used via COM interface, and therefore with applications and scripting
languages that support COM.

 COM interface support is implemented for Raw and Dispatch interfaces.
 Wide range of XML validation, XSLT transformation, and XQuery execution features

are available through interface properties.
 XML, DTD, XML Schema, XSLT, and XQuery input can be provided as files or as text

strings in scripts and in application data.

Java interface

 AltovaXML functionality is available as Java classes that can be used in Java programs.
 Java classes provide XML validation, XSLT transformation, and XQuery execution

features.

.NET interface

 A DLL file is built as a wrapper around AltovaXML and allows .NET users to connect to
the functionality of AltovaXML.

 Provides primary interop assembly signed by Altova.
 Wide range of XML validation, XSLT transformation, and XQuery execution features

are available.
 XML, DTD, XML Schema, XSLT, and XQuery input can be provided as files or as text

strings in scripts and in application data.

http://www.altova.com/download.html

© 2008 Altova GmbH

Available Functionality 5Introduction

AltovaXML 2008

1.2 Available Functionality

AltovaXML provides the functionality listed below. Most of this functionality is common to
command line usage and COM interface usage. One major difference is that COM interface
usage allows documents to be constructed from text strings via the application or scripting code
(instead of referencing XML, DTD, XML Schema, XSLT, or XQuery files).

XML Validation

 Validates the supplied XML document, returning valid or invalid.
 Validation can be done against the DTD or XML Schema referenced within the XML

file, or against an external DTD or XML Schema supplied by a command line parameter
or a COM interface property.

 Checks well-formedness of the supplied XML document, separately from validation.

XSLT Transformations

 Transforms supplied XML document using supplied XSLT 1.0 or XSLT 2.0 document.
 XML document can be provided as a file via the input of a URL. In the case of usage

via the COM interface, the XML document can alternatively be supplied as a text string.
 XSLT document can be provided as a file via the input of a URL. In the case of usage

via the COM interface, the XSLT document can alternatively be supplied as a text
string.

 Returns output documents at the named location. When called via COM interface can
also return output documents as a string.

 XSLT parameters can be supplied via the command line and via the COM interface.

XQuery Execution

 Executes the supplied XQuery 1.0 document, optionally against an XML document
named in a command line parameter or a COM interface property.

 XQuery document can be provided as a file via the input of a URL. In the case of usage
via the COM interface, the XQuery document can alternatively be supplied as a text
string.

 XML document can be provided as a file via the input of a URL. In the case of usage
via the COM interface, the XML document can alternatively be supplied as a text string.

 Returns output documents at the named location. When called via COM interface can
also return output documents as a string.

 External XQuery variables can be supplied via the command line and via the COM
interface.

 Serialization options include: output encoding, output method (that is, whether the
output is XML, XHTML, HTML, or Text), omitting the XML declaration, and indentation.

6 Introduction System Requirements and Installation

© 2008 Altova GmbHAltovaXML 2008

1.3 System Requirements and Installation

System requirements
AltovaXML is supported on Windows NT, Windows 2000, Windows XP, and Windows Server
2003. To use AltovaXML via a COM interface, users should have privileges to use the COM
interface, that is, to register the application and execute the relevant applications and/or scripts.

Installation
AltovaXML is available on the Altova website as a self-extracting download that will install
AltovaXML with the necessary registrations. After you have downloaded the installer file (
AltovaXML2008.exe) to your machine, double-click it to start the installation. The installer will
install AltovaXML in the Altova/AltovaXML2008 folder in the Program Files folder. All the
necessary registrations to use AltovaXML via a COM interface, as a Java interface, and in the
.NET environment will be done by the installer. This includes registering the AltovaXML
executable as a COM server object, installing AltovaXMLLib.dll (for Java interface usage)
in the WINDIR\system32\ directory, and adding the Altova.AltovaXML.dll file to the
.NET reference library.

You should note the following:

 For command line usage, invoke the installed executable file (AltovaXML.exe). This
file can be copied to another accessible location on your machine or network and
invoked from there.

 You can straightaway use AltovaXML via COM interface since the installed executable
file AltovaXML_COM.exe will have been registered as a COM server object. If you
change the location of the executable file AltovaXML_COM.exe to another location on
your machine or to a mapped network drive, then you must manually register it at its
new location as a COM server object. How to do this described in the section,
Registering AltovaXML as a COM server object.

 In order to use AltovaXML via a Java interface, AltovaXML_COM.exe must be
registered as a COM server object and the path to the file AltovaXML.jar (installed in
the Altova/AltovaXML2008 folder) must be added to the CLASSPATH. Registration
as a COM server object is done automatically by the installer process. The installer also
installs AltovaXMLLib.dll in the WINDIR\system32\ directory. However, note
that, if you change the location of the file AltovaXML_COM.exe after installation, then
you must manually register it at its new location as a COM server object. See
Registering AltovaXML as a COM Server Object and Java Interface for details.

http://www.altova.com/download.html

© 2008 Altova GmbH

About this Documentation 7Introduction

AltovaXML 2008

1.4 About this Documentation

This documentation is the official product documentation of AltovaXML and provides
comprehensive information about it. Its structure is as follows:

 The Introduction describes the features of the AltovaXML product, the functionality it
provides, the main system requirements to use AltovaXML, and how AltovaXML is to be
installed.

 The Usage section describes how to use AltovaXML from the command line and via a
COM interface. The Command Line section provides details about the syntax used to
invoke the various functionalities of AltovaXML. The COM Interface section describes
how AltovaXML can be used with a COM interface; it provides a detailed description of
the object model, its interfaces, and the properties of interfaces. The Java Interface
section describes how AltovaXML can be used with Java and lists the defined Java
interfaces and classes. The .NET Interface section provides a description of usage and
lists the various methods and properties that can be used.

 The Engine Information section describes implementation-specific aspects of the
various engines that are components of AltovaXML. Each engine is described
separately.

Chapter 2

Usage

10 Usage

© 2008 Altova GmbHAltovaXML 2008

2 Usage

After AltovaXML has been downloaded and installed at the desired location, you can use it in
the following ways:

 By calling the application from the command line,
 By using the application via a COM interface,
 By using the application via a Java interface, and
 By using the application in the .NET environment.

© 2008 Altova GmbH

Command Line 11Usage

AltovaXML 2008

2.1 Command Line

To use AltovaXML from the command line, the executable file (AltovaXML.exe) must be
installed/copied to an accessible location on your machine or network. The general syntax to
call the application is:

AltovaXML functionality arg1 ... argN [options]

where

AltovaXML Calls the application.

functionalit
y

Specifies whether the XML validation, well-formedness check, XSLT 1.0
transformation, XSLT 2.0 transformation, or XQuery 1.0 execution
functionality is called. Respective values are -validate (or -v),
-wellformed (or -w),
-xslt1, -xslt2, -xquery (or -xq).

arg1 ...
argN

The arguments of the called functionality.

options Each functionality has its own set of options. These are described in the
corresponding sub-sections of this section.

General options

-help, -h, or
-?

Displays usage information, i.e. a list of all arguments and options.

-version,
-ver

Displays the program version.

The following functionality is available, and the allowed arguments and options for each
functionality are described in detail in the corresponding sections:

 XML Validation and Well-Formedness
 XSLT 1.0 Transformations
 XSLT 2.0 Transformations
 XQuery 1.0 Executions

Usage summary
Given below is a summary of command line usage. For details, refer to the respective sections.

Using Altova XML Validator

 -validate <filename> [-schema <filename> | -dtd <filename>]
 -wellformed <filename>

Using Altova XSLT 1.0 Engine

 -xslt1 <filename> -in <filename> [-param name=value] [-out
<filename>]

Using Altova XSLT 2.0 Engine

12 Usage Command Line

© 2008 Altova GmbHAltovaXML 2008

 -xslt2 <filename> -in <filename> [-param name=value] [-out
<filename>]

Using Altova XQuery 1.0 Engine

 -xquery <filename> [-in <filename>] [-param name=value] [-out
<filename>] [serialization options]

Note: If the filename or the path to it contains a space, then the entire path should be enclosed
in quotes. For example: "c:\My Files\MyXML.xml" or "c:\MyFiles\My XML.xml".

© 2008 Altova GmbH

Command Line 13Usage

AltovaXML 2008

2.1.1 XML Validation and Well-Formedness

Syntax
The syntax to invoke XML validation is:

AltovaXML -validate xmlfile [-schema schemafile | -dtd dtdfile]

where

AltovaXML Calls the application

-validate (or -v) Specifies that the Altova XML Validator is to be used to validate the file
xmlfile.

The following options are available:

-schema (or -s) Specifies the XML Schema file schemafile to be used for validation.

-dtd (or -d) Specifies the DTD file dtdfile to be used for validation.

Note:

 When no XML Schema or DTD file is specified as a command line option, an XML
Schema or DTD file must be specified in the XML document itself.

 If an XML Schema or DTD file is specified as a command line option and an XML
Schema or DTD file is referenced in the XML file, then the file specified in the command
line option is used for validation.

The syntax to invoke the well-formedness check is:

AltovaXML -wellformed xmlfile

where

AltovaXML Calls the application

-wellformed (or
-w)

Specifies that the Altova XML Validator is to be used to check the
well-formedness of the file xmlfile.

Examples

 AltovaXML -validate test.xml -schema testschema.xml
 AltovaXML -v test.xml -dtd testdtd.dtd
 AltovaXML -wellformed test.xml
 AltovaXML -w test.xml

Note: For using Altova XML in batch commands, it is important to know the following:

 The return code of the last executed command is stored in the errorlevel variable,
the value of which can be retrieved with a batch command such as ECHO
%errorlevel%.
 The return codes are 0 = well-formed/valid; 1 = not well-formed/invalid.

14 Usage Command Line

© 2008 Altova GmbHAltovaXML 2008

2.1.2 XSLT 1.0 Transformations

Syntax
The syntax to invoke XSLT 1.0 transformations is:

AltovaXML -xslt1 xsltfile -in xmlfile [-out outputfile] [options]

where

AltovaXML Calls the application.

-xslt1 Specifies that the Altova XSLT 1.0 Engine is to be used for an XSLT
transformation; the engine uses the XSLT 1.0 file xsltfile for the
transformation.

-in Specifies the XML file xmlfile to be transformed and its location.

-out Specifies the output file outputfile and its location. If this option is
omitted, the output is written to standard output.

The following options are available:

-param Takes the instruction paramname=XPath expression. The -param
switch is used before each global parameter. Double quotes must be
used if a space is included in an XPath expression—whether in a path
expression itself or in a string literal in the expression. See examples.

-xslstack The stack size is the maximum depth of executed instructions, and can
be changed with the -xslstack value. The minimum allowed value is
100. The default stack size is 1000. If the stack size is exceeded
during a transformation, an error is reported.

-namedTemplate
(or -n)

Sets the initial named template. A space separates the argument from
its value. Example: -namedTemplate MyTemplate

-mode (or -m) Sets the initial template mode. A space separates the argument from
its value. Example: -mode MyMode

Note:

 The XSLT file must be specified in the command line instruction; an XSLT file
referenced in an <?xml-stylesheet?> processing instruction in the XML document
is not automatically used.

 If the -out parameter is omitted, output is written to the standard output.

Examples

 AltovaXML -xslt1 test.xslt -in test.xml -out testout.xml
 AltovaXML -xslt1 test.xslt -in test.xml -out testout.xml

-param date=//node/@att1
 AltovaXML -xslt1 test.xslt -in test.xml -out testout.xml

-param date="//node/@att1 | //node/@att2"
 AltovaXML -xslt1 test.xslt -in test.xml -out testout.xml

-param date=node/@att1 -param title='stringwithoutspace'
 AltovaXML -xslt1 test.xslt -in test.xml -out testout.xml

-param date=node/@att1 -param title="'string with spaces'"

© 2008 Altova GmbH

Command Line 15Usage

AltovaXML 2008

2.1.3 XSLT 2.0 Transformations

Syntax
The syntax to invoke XSLT 2.0 transformations is:

AltovaXML -xslt2 xsltfile -in xmlfile [-out outputfile] [options]

where

AltovaXML Calls the application.

-xslt2 Specifies that the Altova XSLT 2.0 Engine is to be used for an XSLT
transformation; the engine uses the XSLT 2.0 file xsltfile for the
transformation.

-in Specifies the XML file xmlfile to be transformed and its location.

-out Specifies the output file outputfile and its location. If this option is
omitted, the output is written to standard output.

The following options are available:

-param Takes the instruction paramname=XPath expression. The -param
switch is used before each global parameter. Double quotes must be
used if a space is included in an XPath expression—whether in a path
expression itself or in a string literal in the expression. See examples.

-xslstack The stack size is the maximum depth of executed instructions, and can
be changed with the -xslstack value. The minimum allowed value is
100. The default stack size is 1000. If the stack size is exceeded
during a transformation, an error is reported.

-namedTemplate
(or -n)

Sets the initial named template. A space separates the argument from
its value. Example: -namedTemplate MyTemplate

-mode (or -m) Sets the initial template mode. A space separates the argument from
its value. Example: -mode MyMode

Note:

 The XSLT file must be specified in the command line instruction; an XSLT file
referenced in an <?xml-stylesheet?> processing instruction in the XML document
is not automatically used.

 If the -out parameter is omitted, output is written to the standard output.

 The XSLT 2.0 Engine can be used in its backward compatibility mode to process an
XSLT 1.0 stylesheet. The output, however, could be different than that produced by the
XSLT 1.0 Engine processing the same XSLT 1.0 stylesheet.

Examples

 AltovaXML -xslt2 test.xslt -in test.xml -out testout.xml
 AltovaXML -xslt2 test.xslt -in test.xml -out testout.xml

-param date=//node/@att1
 AltovaXML -xslt2 test.xslt -in test.xml -out testout.xml

-param date="//node/@att1 | //node/@att2"
 AltovaXML -xslt2 test.xslt -in test.xml -out testout.xml

-param date=node/@att1 -param title='stringwithoutspace'
 AltovaXML -xslt2 test.xslt -in test.xml -out testout.xml

-param date=node/@att1 -param title="'string with spaces'"

16 Usage Command Line

© 2008 Altova GmbHAltovaXML 2008

© 2008 Altova GmbH

Command Line 17Usage

AltovaXML 2008

2.1.4 XQuery 1.0 Executions

Syntax
The syntax to invoke XQuery 1.0 executions is:

AltovaXML -xquery xqueryfile [-in inputXMLfile -out outputfile]
[options]

where

AltovaXML Calls the application.

-xquery (or -xq) Specifies that the Altova XQuery 1.0 Engine is to be used for an
XQuery execution of the file xqueryfile.

-in Specifies the input XML file.

-out Specifies the output file and its location. If this option is omitted, output
is written to the standard output.

The following options are available:

-var Specifies an external variable and its value. Takes the form
name=value. Any number of external variables can be submitted, but
each must be preceded by the -var keyword. Variable values must
be strings that conform to the lexical form of the datatype as which the
variable has been declared.

-xparam Specifies an XQuery parameter name and the parameter's value.
Takes the form name=XPathExpression. Use double quotes to
enclose the XPath expression if the expression contains spaces. Use
single quotes to delimit string literals in the XPath expression. Any
number of parameters can be submitted, but each must be preceded
by the -xparam keyword.

-outputMethod
(or -om)

Serialization option to specify the type of output. Valid values are xml,
html, xhtml, and text. Default is xml.

-omitXMLDeclarati
on
(or -od)

Serialization option to specify whether the XML declaration should be
omitted from the output or not. Valid values are yes and no. Default
is yes.

-outputIndent
(or -oi)

Serialization option to specify whether the output should be indented
or not. Valid values are yes and no. Default is no.

-outputEncoding
(or -oe)

Serialization option to specify the character set of the output. Valid
values are names in the IANA character set registry. Default is UTF-8
.

Note: If the -out parameter is omitted, output is written to the standard output.

Examples

 AltovaXML -xquery testquery.xq -out testout.xml
 AltovaXML -xquery testquery.xq -in products.xml -out

testout.xml
-var company=Altova -var date=2006-01-01

 AltovaXML -xquery testquery.xq -out testout.xml
-xparam source = " doc('c:\test\books.xml')//book "

 AltovaXML -xquery testquery.xq -in products.xml -out

18 Usage Command Line

© 2008 Altova GmbHAltovaXML 2008

testout.xml
-var company=Altova -omitXMLDeclaration no -oe ASCII

© 2008 Altova GmbH

COM Interface 19Usage

AltovaXML 2008

2.2 COM Interface

When registered as a COM server object, AltovaXML can be invoked from within applications
and scripting languages that have programming support for COM calls. This is useful because it
enables XML document validation, XSLT transformations (XSLT 1.0 and XSLT 2.0), and
XQuery 1.0 document executions to be performed, by AltovaXML, from within a wide range of
user applications.

To use AltovaXML with applications and scripting languages that have a COM interface, you
must first register AltovaXML as a COM server object. How to do this is described in
Registering AltovaXML as a COM server object.

The AltovaXML object model and its properties are described in the following sub-sections of
this section. (Note that you can use both the Raw Interface and Dispatch Interface of COM. The
Raw Interface is used for programming languages (such as C++).The Dispatch Interface is
used for scripting languages (such as JavaScript) that do not allow passing parameters by
reference.) You can therefore use AltovaXML with:

 Scripting languages such as JavaScript or any other scripting language that supports
the COM interface.

 Programming languages such as C++ or any other that supports the COM interface.
 Java and .NET, for which interfaces are built as a wrapper, with classes being created

around the COM interface.

This section on COM interface usage ends with a set of examples of how various functionalities
of AltovaXML can be invoked from within a variety of user applications.

Examples
For examples additional to those in this section, see the example files in the Examples folder in
the application folder.

20 Usage COM Interface

© 2008 Altova GmbHAltovaXML 2008

2.2.1 Registering AltovaXML as a COM Server Object

When you install AltovaXML 2008, AltovaXML_COM.exe will automatically be registered as a
COM server object. If you need to change the location of AltovaXML_COM.exe, it is best to
de-install AltovaXML and then re-install it at the required location. In this way the necessary
unregistration and registration are carried out by the installer process. If you copy AltovaXML
_COM.exe to another machine, you must manually register AltovaXML at its new location as a
COM server object. How to do this is explained below. This description assumes that
AltovaXML has been successfully installed.

Manual registration
To register AltovaXML as a COM server object, do the following:

1. Copy AltovaXML_COM.exe to the required location. If this location is not on the local
machine, map this location to a network folder.

2. Open a Windows Command Prompt window, or, from the Start menu, select Run....
3. Register the application as a COM server object by using the /regserver parameter.

For example, if AltovaXML_COM.exe is in the folder c:\AltovaXML, then key in:

c:\AltovaXML\AltovaXML_COM.exe /regserver

and press Enter.

Checking success of the registration
If the registration was successful, the Registry should contain the classes
AltovaXML.Application and AltovaXML.Application.1. These two classes will
typically be found under HKEY_LOCAL_MACHINE\SOFTWARE\Classes.

Manual unregistration
If the AltovaXML_COM.exe has been manually registered and you now wish to unregister it,
then it should be manually unregistered. To manually unregister AltovaXML, call the application
with the /unregserver parameter. For example, if the AltovaXML executable is in the folder
c:\AltovaXML, then open a Windows Command Prompt window, key in c:\AltovaXML\
AltovaXML_COM.exe /unregserver, and press Enter. You can check the Registry Editor
for confirmation of unregistration.

Note: If AltovaXML was registered by the installer, the unregistration should be done by the
installer—that is, by de-installing AltovaXML from the machine.

© 2008 Altova GmbH

COM Interface 21Usage

AltovaXML 2008

2.2.2 AltovaXML Object Model

The starting point for using the functionality of AltovaXML is the Application interface. This
object contains the four objects that provide the AltovaXML functionality: XML validation, XSLT
1.0 transformations, XSLT 2.0 transformations, and XQuery 1.0 document processing. These
objects have dual interfaces: the Dispatch Interface and the Raw Interface, which enables them
to be used in scripting languages as well as in applications.

The object model of the AltovaXML API is depicted in the following diagram.

The hierarchy of the object model is shown below, and the five interfaces are described in detail
in the corresponding sections. The properties and usage of each interface are described in the
section for that interface.

 Application
 XMLValidator
 XSLT1
 XSLT2
 XQuery

Note:
Note the following general points about COM Interface usage:

 The term XML document refers not only to an XML document contained in an XML file
but also to an XML document created with the InputXMLFromText property.

 Properties that take a resource location as its input accept absolute paths, as well as
the HTTP and FTP protocols.

 When relative paths are used by a method to locate a resource, the resolution of the
relative path should be defined in the calling module.

22 Usage COM Interface

© 2008 Altova GmbHAltovaXML 2008

2.2.3 Application

Description
AltovaXML.Application is the root for all other objects. It is the only object you can create
with the CreateObject function (of VisualBasic) or other similar COM-related functions.

Properties
AltovaXML.Application has the four properties listed below. Each of these functions
returns the interface for the specific component. The details of each interface are given in the
respective sections listed below.

 XMLValidator
 XSLT1
 XSLT2
 XQuery

Examples
Given below is a Visual Basic script that first creates the AltovaXML object, and then calls
properties of the application interface.

Sub CommandButton1_Click()
Set objAltovaXML = CreateObject("AltovaXML.Application")

 objAltovaXML.XMLValidator.InputXMLFileName =
"c:\AltovaXML\test.xml"
 Sheet1.Cells(5, 2) = objAltovaXML.XMLValidator.IsValid

 objAltovaXML.XSLT1.InputXMLFromText = "<?xml version='1.0'
encoding='UTF-8'?><a>"
 objAltovaXML.XSLT1.XSLFileName = "c:\workarea\altova_xml\1.xslt"
 Sheet1.Cells(6, 2) =
objAltovaXML.XSLT1.ExecuteAndGetResultAsString

End Sub

© 2008 Altova GmbH

COM Interface 23Usage

AltovaXML 2008

2.2.4 XMLValidator

Description
The XMLValidator interface provides methods to test:

 The well-formedness of an XML document.
 The validity of an XML document against a DTD or XML Schema referenced from

within the XML document.
 The validity of an XML document against a DTD or XML Schema supplied externally via

the code.

All these methods return Boolean TRUE or FALSE. See examples below.

Note: Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the calling
module.

Methods
The following methods are available:

IsWellFormed
IsWellFormed checks the well-formedness of the XML document. Returns TRUE if the XML
document is well-formed, FALSE if it is not well-formed.

IsValid
IsValid validates the XML document against the DTD or XML Schema referenced in the XML
document. Returns TRUE if the XML document is valid, FALSE if invalid. To validate against a
DTD or XML Schema not referenced in the XML document, use the method
IsValidWithExternalSchemaOrDTD.

IsValidWithExternalSchemaOrDTD
IsValidWithExternalSchemaOrDTD validates the XML document against the DTD or XML
Schema supplied by any one of the following properties: SchemaFileName, DTDFileName,
SchemaFromText, or DTDFromText. If more than one of these properties has values set for it,
then the IsValidWithExternalSchemaOrDTD method uses the property that has been set
last. Returns TRUE if the XML document is valid, FALSE if invalid. To validate against a DTD or
XML Schema referenced in the XML document, use the method IsValid.

Note: Validation and well-formedness checks must always occur after assigning the XML
and/or DTD or XML Schema document to the respective properties.

Properties
The following properties are defined:

InputXMLFileName
A string input that is read as a URL to locate the XML file to be validated.

SchemaFileName
A string input that is read as a URL to locate the XML Schema file against which the XML
document is to be validated.

DTDFileName
A string input that is read as a URL to locate the DTD file against which the XML document is to
be validated.

24 Usage COM Interface

© 2008 Altova GmbHAltovaXML 2008

InputXMLFromText
A string input that constructs an XML document.

SchemaFromText
A string input that constructs an XML Schema document.

DTDFromText
A string input that constructs a DTD document.

LastErrorMessage
Returns the last error message.

Examples
Given below is a single Visual Basic procedure that shows how the methods and properties of
the XMLValidator interface can be used. This code is intended for use as a macro in an MS
Excel worksheet, and references to worksheet cells indicate locations of input or output data.
The file c:\AltovaXML\test.xml is assumed to contain a reference to a DTD.

Sub CommandButton1_Click()
Set objAltovaXML = CreateObject("AltovaXML.Application")

 objAltovaXML.XMLValidator.InputXMLFromText = "<?xml version='1.0'
encoding='UTF-8'?><a>"
 Sheet1.Cells(4, 2) = objAltovaXML.XMLValidator.IsWellFormed

 objAltovaXML.XMLValidator.InputXMLFileName =
"c:\AltovaXML\test.xml"
 Sheet1.Cells(5, 2) = objAltovaXML.XMLValidator.IsValid

 objAltovaXML.XMLValidator.InputXMLFileName =
"c:\AltovaXML\test.xml"
 objAltovaXML.XMLValidator.DTDFileName = "c:\AltovaXML\test.dtd"
 Sheet1.Cells(6, 2) =
objAltovaXML.XMLValidator.IsValidWithExternalSchemaOrDTD

 objAltovaXML.XMLValidator.InputXMLFromText = "<?xml version='1.0'
encoding='UTF-8'?><a>"
 objAltovaXML.XMLValidator.DTDFileName = "c:\AltovaXML\test.dtd"
 Sheet1.Cells(7, 2) =
objAltovaXML.XMLValidator.IsValidWithExternalSchemaOrDTD
End Sub

© 2008 Altova GmbH

COM Interface 25Usage

AltovaXML 2008

2.2.5 XSLT1

Description
The XSLT1 interface provides methods and properties to execute an XSLT 1.0 transformation
using the Altova XSLT 1.0 Engine. Results can be saved to a file or returned as a string. The
interface also enables XSLT parameters to be passed to the XSLT stylesheet. The URLs of
XML and XSLT files can be supplied as strings via interface properties. Alternatively, the XML
and XSLT documents can be constructed within the scripting or programming code as text
strings. See examples below.

Note: Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the calling
module.

Methods
The following methods are available:

Execute
Execute executes an XSLT 1.0 transformation and saves the result to an output file, the name
and location of which is provided as an input string to the Execute method.

ExecuteAndGetResultAsString
ExecuteAndGetResultAsString executes an XSLT 1.0 transformation and returns the
result as a UTF-16 text string.

AddExternalParameter
Takes a parameter name and the value of this parameter as input arguments. Each external
parameter and its value is to be specified in a separate call to the method. Providing an external
parameter with the name of an existing (uncleared) parameter causes an error. Since
parameter values are XPath expressions, parameter values that are strings must be enclosed
in single quotes. See examples below.

ClearExternalParameterList
No argument should be provided. The ClearExternalParameterList clears the external
parameters list created with AddExternalParameter methods.

Note: Transformation must always occur after assigning the XML and XSLT documents.

Properties
The following properties are defined:

InputXMLFileName
A string input that is read as a URL to locate the XML file to be transformed.

XSLFileName
A string input that is read as a URL to locate the XSLT file to be used for the transformation.

InputXMLFromText
A string input that constructs an XML document.

XSLFromText
A string input that constructs an XSLT document.

XSLStackSize
The stack size is the maximum depth of executed instructions. The stack size can be changed

26 Usage COM Interface

© 2008 Altova GmbHAltovaXML 2008

with the XSLStackSize property. The minimum allowed stack size is 100. The default stack
size is 1000. If the stack size is exceeded during a transformation, an error is reported.

LastErrorMessage
Returns the last error message.

Examples
Given below is a single Visual Basic procedure that shows how the various methods and
properties of the XSLT1 interface can be used. This code is intended for use as a macro in an
MS Excel worksheet, and references to worksheet cells indicate locations of input or output
data.

Sub CommandButton1_Click()
Set objAltovaXML = CreateObject("AltovaXML.Application")

 objAltovaXML.XSLT1.InputXMLFromText = "<?xml version='1.0'
encoding='UTF-8'?>
 <a>"
 objAltovaXML.XSLT1.XSLFileName = "c:\AltovaXML\test.xslt"
 objAltovaXML.XSLT1.Execute "c:\AltovaXML\test_result.xml

 objAltovaXML.XSLT1.XSLStackSize = "500"
 objAltovaXML.XSLT1.InputXMLFromText = "<?xml version='1.0'
encoding='UTF-8'?>
 <company><name/><year>2005</year></company>"
 objAltovaXML.XSLT1.XSLFileName = "c:\AltovaXML\test.xslt"
 objAltovaXML.XSLT1.AddExternalParameter "web", "'www.altova.com'"
 objAltovaXML.XSLT1.AddExternalParameter "year", "/company/year"
 Sheet1.Cells(6, 2) =
objAltovaXML.XSLT1.ExecuteAndGetResultAsString
 objAltovaXML.XSLT1.ClearExternalParameterList
 objAltovaXML.XSLT1.AddExternalParameter "web",
"'www.nanonull.com'"
 objAltovaXML.XSLT1.AddExternalParameter "year", "/company/year"
 Sheet1.Cells(7, 2) =
objAltovaXML.XSLT1.ExecuteAndGetResultAsString
End Sub

© 2008 Altova GmbH

COM Interface 27Usage

AltovaXML 2008

2.2.6 XSLT2

Description
The XSLT2 interface provides methods and properties to execute an XSLT 2.0 transformation
using the Altova XSLT 2.0 Engine. Results can be saved to a file or returned as a string. The
interface also enables XSLT parameters to be passed to the XSLT stylesheet. The URLs of
XML and XSLT files can be supplied as strings via interface properties. Alternatively, the XML
and XSLT documents can be constructed within the scripting or programming code as text
strings. See examples below.

Note:

 Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the
calling module.

 The XSLT 2.0 Engine can be used in its backward compatibility mode to process an
XSLT 1.0 stylesheet. The output, however, could be different than that produced by the
XSLT 1.0 Engine processing the same XSLT 1.0 stylesheet.

Methods
The following methods are available:

Execute
Execute executes an XSLT 2.0 transformation and saves the result to an output file, the name
and location of which is provided as an input string to the Execute method.

ExecuteAndGetResultAsString
ExecuteAndGetResultAsString executes an XSLT 2.0 transformation and returns the
result as a UTF-16 text string.

AddExternalParameter
Takes a parameter name and the value of this parameter as input arguments. Each external
parameter and its value is to be specified in a separate call to the method. Providing an external
parameter with the name of an existing (uncleared) parameter causes an error. Since
parameter values are XPath expressions, parameter values that are strings must be enclosed
in single quotes. See examples below. Notice in the examples that the date parameter is given
a value that is an XPath 2.0 function (current-date()).

ClearExternalParameterList
No argument should be provided. The ClearExternalParameterList clears the external
parameters list created with AddExternalParameter methods.

Note: Transformation must always occur after assigning the XML and XSLT documents.

Properties
The following properties are defined:

InputXMLFileName
A string input that is read as a URL to locate the XML file to be transformed.

XSLFileName
A string input that is read as a URL to locate the XSLT file to be used for the transformation.

InputXMLFromText
A string input that constructs an XML document.

28 Usage COM Interface

© 2008 Altova GmbHAltovaXML 2008

XSLFromText
A string input that constructs an XSLT document.

XSLStackSize
The stack size is the maximum depth of executed instructions. The stack size can be changed
with the XSLStackSize property. The minimum allowed stack size is 100. The default stack
size is 1000. If the stack size is exceeded during a transformation, an error is reported.

LastErrorMessage
Returns the last error message.

Examples
Given below is a single Visual Basic procedure that shows how the various methods and
properties of the XSLT2 interface can be used. This code was intended for use as a macro in
an MS Excel worksheet, and references to worksheet cells indicate locations of input or output
data.

Sub CommandButton1_Click()
Set objAltovaXML = CreateObject("AltovaXML.Application")

 objAltovaXML.XSLT2.InputXMLFromText = "<?xml version='1.0'
encoding='UTF-8'?>
 <a>"
 objAltovaXML.XSLT2.XSLFileName = "c:\AltovaXML\test.xslt"
 Sheet1.Cells(7, 2) =
objAltovaXML.XSLT2.ExecuteAndGetResultAsString

 objAltovaXML.XSLT2.XSLStackSize = "500"
 objAltovaXML.XSLT2.InputXMLFromText = "<?xml version='1.0'
encoding='UTF-8'?>
 <company><name/><year>2005</year></company>"
 objAltovaXML.XSLT2.XSLFileName = "c:\workarea\AltovaXML\2.xslt"
 objAltovaXML.XSLT2.AddExternalParameter "date", "current-date()"
 objAltovaXML.XSLT2.AddExternalParameter "hq", "'Vienna, Austria'"
 Sheet1.Cells(8, 2) =
objAltovaXML.XSLT2.ExecuteAndGetResultAsString
 objAltovaXML.XSLT2.AddExternalParameter "web",
"'www.nanonull.com'"
 objAltovaXML.XSLT2.AddExternalParameter "year", "/company/year"
 objAltovaXML.XSLT2.Execute
"c:\workarea\AltovaXML\test_result_xslt2.xml"
 Sheet1.Cells(9, 2) =
objAltovaXML.XSLT2.ExecuteAndGetResultAsString
End Sub

© 2008 Altova GmbH

COM Interface 29Usage

AltovaXML 2008

2.2.7 XQuery

Description
The XQuery interface provides methods and properties to execute an XQuery 1.0
transformation using the Altova XQuery 1.0 Engine. Results can be saved to a file or returned
as a string. The interface also enables external XQuery variables to be passed to the XQuery
document. The URLs of XQuery and XML files can be supplied as strings via interface
properties. Alternatively, the XML and XQuery documents can be constructed within the
scripting or programming code as text strings. See examples below.

Note: Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the calling
module.

Methods
The following methods are available:

Execute
Execute executes an XQuery 1.0 transformation and saves the result to an output file, the
name and location of which is provided as an input string to the Execute method.

ExecuteAndGetResultAsString
ExecuteAndGetResultAsString executes an XQuery 1.0 transformation and returns the
result as a UTF-16 text string.

AddExternalVariable
Takes a variable name and the value of this variable as input arguments. Each external
variableand its value is to be specified in a separate call to the method. Variables must be
declared in the XQuery document, optionally with a type declaration. Whatever the type
declaration for the external variable in the XQuery document, the variable value submitted to
the AddExternalVariable method does not need any special delimiter, such as quotes (see
example below). However, the lexical form must match that of the expected type (for example,
a variable of type xs:date must have a value in the lexical form 2004-01-31; a value in the
lexical form 2004/Jan/01 will cause an error). Note that this also means that you cannot use
an XQuery 1.0 function (for example, current-date()) as the value of an external variable
(since the lexical form of the function as it is written will either not match the required data type
(if the datatype is specified in the declaration of the external variable) or will be read as a string
(if the datatype is not specified).) Providing an external variable that has the name of an existing
(uncleared) variable causes an error.

AddExternalVariableAsXPath
Takes a variable name and the value of this variable as input arguments. Similar to
AddExternalVariable method, except that AddExternalVariableAsXPath will be
evaluated first as an XPath 2.0 expression. This makes it possible to pass in nodes and
sequences with more than one element.

ClearExternalVariableList
No argument should be provided. The ClearExternalVariableList clears the external
variables list created with AddExternalVariable methods.

Note: Setting the optional XML document must always be done before query execution.

Properties
The following properties are defined:

30 Usage COM Interface

© 2008 Altova GmbHAltovaXML 2008

XQueryFileName
A string input that is read as a URL to locate the XQuery file to be executed. If both the
XQueryFileName property and XQueryFromText property are specified, then the property
that has been set later than the other (in the code sequence) is used.

InputXMLFileName
A string input that is read as a URL to locate the XML file that will be loaded into the query.
XQuery navigation expressions are evaluated with reference to the document node of this XML
document. If both the InputXMLFileName property and InputXMLFromText property are
specified, then the property that has been set later than the other (in the code sequence) is
used.

XQueryFromText
A string input that constructs an XQuery document. If both the XQueryFileName property and
XQueryFromText property are specified, then the property that has been set later than the
other (in the code sequence) is used.

InputXMLFromText
A string input that constructs an XML document. XQuery navigation expressions are evaluated
with reference to the document node of this XML document. If both the InputXMLFileName
property and InputXMLFromText property are specified, then the property that has been set
later than the other (in the code sequence) is used.

LastErrorMessage
Returns the last error message.

Note: If an XML document is set and is not needed for a new XQuery execution, then it should
be cleared with an empty string assignment.

The following serialization options are defined:

OutputMethod
The required output method can be specified by submitting the required value as a string
argument. Valid values are: xml, xhtml, html, and text. For example:
objAltovaXML.XQuery.OutputMethod = "xml". If the value is invalid, it is ignored. The
default output method is xml.

OutputOmitXMLDeclaration
You can specify whether the XML declaration should be omitted or included in the output by
submitting true or false (case-insensitive) as a Boolean argument. For example:
objAltovaXML.XQuery.OutputOmitXMLDeclaration = "FALSE". If the value is invalid,
an error is raised. The default option is TRUE.

OutputIndent
 You can specify whether the output should be indented or not by submitting true or false
(case-insensitive) as a Boolean argument. For example:
objAltovaXML.XQuery.OutputIndent = "TRUE". If the value is invalid, an error is
raised. The default option is False.

OutputEncoding
 The required output encoding can be specified by submitting the encoding value as a string
argument. For example: objAltovaXML.XQuery.OutputEncoding = "UTF-8". If the
value is invalid, it is ignored. The default output encoding is UTF-8.

Note: For the serialization options, Raw Interface and Dispatch Interface usage differs. In the
Raw Interface, if no argument is provided with these properties, then the current value of the

© 2008 Altova GmbH

COM Interface 31Usage

AltovaXML 2008

property is returned. You would use something like: put_OutputOption(VARIANT_BOOL
bVal) or VARIANT_BOOL bVal = get_OutputOption(), respectively, to set values and
get values. In the Dispatch Interface, you can use b = myXQuery.OutputOption to get
values and myXQuery.OutputOption = b to set values. For example, in the Dispatch
Interface, Sheet1.Cells(10, 2) = objAltovaXML.XQuery.OutputEncoding would
get the current output encoding.

Examples
Given below is a single Visual Basic procedure that shows how the various methods and
properties of the XQuery interface can be used. This code was intended for use as a macro in
an MS Excel worksheet, and references to worksheet cells indicate locations of input or output
data.

Sub CommandButton1_Click()
Set objAltovaXML = CreateObject("AltovaXML.Application")

 objAltovaXML.XQuery.InputXMLFileName = "c:\AltovaXML\test.xml"
 objAltovaXML.XQuery.XQueryFromText = " xquery version '1.0';
 declare variable $string as xs:string external;
 declare variable $num as xs:decimal external;
 declare variable $date as xs:date external;
 $string, ' ', 2*$num, ' ', $date "
 objAltovaXML.XQuery.AddExternalVariable "string", "A string"
 objAltovaXML.XQuery.AddExternalVariable "num", "2.1"
 objAltovaXML.XQuery.AddExternalVariable "date", "2005-04-21"
 Sheet1.Cells(10, 2) = objAltovaXML.XQuery.OutputEncoding
 objAltovaXML.XQuery.OutputMethod = "text"
 Sheet1.Cells(11, 2) = objAltovaXML.XQuery.OutputMethod
 objAltovaXML.XQuery.OutputIndent = "TRUE"
 Sheet1.Cells(12, 2) = objAltovaXML.XQuery.OutputIndent
 objAltovaXML.XQuery.OutputOmitXMLDeclaration = "FALSE"
 Sheet1.Cells(13, 2) = objAltovaXML.XQuery.OutputOmitXMLDeclaration
 Sheet1.Cells(14, 2) =
objAltovaXML.XQuery.ExecuteAndGetResultAsString
End Sub

32 Usage COM Interface

© 2008 Altova GmbHAltovaXML 2008

2.2.8 Examples

This section contains example code in (i) Visual Basic for an Excel macro; (ii) JScript; and (iii)
C++. These examples will give you an idea of how you can use AltovaXML with a COM
Interface.

For more detailed examples, see the example files in the Examples folder in the application
folder.

Visual Basic

The following Visual Basic example is the code for a macro in an Excel worksheet (screenshot
below). The macro has been assigned to the button Run Expressions. On clicking the
button, the Visual Basic code is executed.

Code sample
The Visual Basic code below uses the XQuery interface.

Sub CommandButton1_Click()
Set objAltovaXML = CreateObject("AltovaXML.Application")

 objAltovaXML.XQuery.XQueryFromText = Sheet1.Cells(2, 1)
 Sheet1.Cells(2, 2) =
objAltovaXML.XQuery.ExecuteAndGetResultAsString

 objAltovaXML.XQuery.InputXMLFromText = Sheet1.Cells(3, 1)
 objAltovaXML.XQuery.XQueryFromText = "translate(node, ';-', '. ')"
 Sheet1.Cells(3, 2) =
objAltovaXML.XQuery.ExecuteAndGetResultAsString

 objAltovaXML.XQuery.InputXMLFromText = "<a myAttr='A
code-generated string'/>"
 objAltovaXML.XQuery.XQueryFromText = "string(/a/@*)"
 Sheet1.Cells(4, 2) =
objAltovaXML.XQuery.ExecuteAndGetResultAsString
End Sub

On clicking the button Run Expressions in the Excel worksheet, the following three XQuery
instructions are executed:

1. The input for the XQueryFromText property is an XQuery expression taken as text
from the Excel worksheet cell 2A. The ExecuteAndGetResultAsString property
executes the XQuery expression and places the result in the Excel worksheet cell 2B.

2. The input for the InputXMLFromText property is an XML fragment taken from the
Excel worksheet cell 3A. The XQuery expression is given to the XQueryFromText
property directly in the code. The result is placed in the Excel worksheet cell 3B.

3. The InputXMLFromText property creates an XML tree from the XML fragment

© 2008 Altova GmbH

COM Interface 33Usage

AltovaXML 2008

provided to it. The XQuery expression is given to the XQueryFromText property
directly in the code, and the result is placed in the Excel worksheet cell 4B.

JScript

Given below is a JScript code sample that shows how AltovaXML can be used via the COM
interface.

Code sample

// //////////// global variables /////////////////
var objAltovaXML = null;

// /////////////////////// Helpers //////////////////////////////

function Exit(strErrorText)
{
 WScript.Echo(strErrorText);

 if (objAltovaXML != null)
 objAltovaXML.Quit();

 WScript.Quit(-1);
}

function ERROR(strText, objErr)
{
 if (objErr != null)
 Exit ("ERROR: (" + (objErr.number & 0xffff) + ")" + objErr.description +
" - " + strText);
 else
 Exit ("ERROR: " + strText);
}

function CreateGlobalObjects ()
{
 // create the AltovaXML connection
 // if there is a running instance of AltovaXML (that never had a
connection) - use it
 // otherwise, we automatically create a new instance
 try
 {
 objAltovaXML = WScript.GetObject("", "AltovaXML.Application");
 //WScript.Echo("Successfully accessing AltovaXML.Application");
 }
 catch(err)
 {
 WScript.Echo(err)
 { Exit("Can't access or create AltovaXML.Application"); }
 }
}

// /////////////////////// MAIN //////////////////////////////

CreateGlobalObjects();

objAltovaXML.XQuery.InputXMLFromText = " \
 <bib> \
 <book year=\"1994\"> \
 <title>TCP/IP Illustrated</title> \
 <author><last>Stevens</last><first>W.</first></author> \
 <publisher>AW</publisher> \
 <price>65.95</price> \

34 Usage COM Interface

© 2008 Altova GmbHAltovaXML 2008

 </book> \
 <book year=\"1992\"> \
 <title>Advanced Programming in the Unix Environment</title> \
 <author><last>Stevens</last><first>W.</first></author> \
 <publisher>AW</publisher> \
 <price>65.95</price> \
 </book> \
 <book year=\"2000\"> \
 <title>Data on the Web</title> \
 <author><last>Abiteboul</last><first>Serge</first></author> \
 <author><last>Abiteboul</last><first>Serge</first></author> \
 <author><last>Abiteboul</last><first>Serge</first></author> \
 <publisher>John Jameson Publishers</publisher> \
 <price>39.95</price> \
 </book> \
 <book year=\"1999\"> \
 <title>Digital TV</title> \

<editor><last>Gassy</last><first>Viktor</first><affiliation>CITI</affiliation>
</editor> \
 <publisher>Kingston Academic Press</publisher> \
 <price>129.95</price> \
 </book> \
 </bib> ";

objAltovaXML.XQuery.XQueryFromText = "\
 (: Filename: xmpQ1.xq :) \
 (: Source: http://www.w3.org/TR/xquery-use-cases/#xmp-data :) \
 (: Section: 1.1.1.9 Q1 :) \
 (: List books published by AW after 1991, including their year and title.:)
\
 <bib> \
 { \
 for $b in /bib/book where $b/publisher = \"AW\" and $b/@year > 1991 \
 return <book year=\"{ $b/@year }\"> { $b/title } </book>
\
 } \
 </bib> ";

var sResult = objAltovaXML.XQuery.ExecuteAndGetResultAsString();
WScript.Echo(sResult);

C++

Given below is a C++ code sample that shows how AltovaXML can be used via the COM
interface.

Code sample

// TestAltovaXML.cpp : Defines the entry point for the console application.
//
#include "objbase.h"
#include <iostream>
#include "atlbase.h"

#import "AltovaXML_COM.exe" no_namespace raw_interfaces_only
// - or -
//#import "AltovaXML_COM.exe" raw_interfaces_only
//using namespace AltovaXMLLib;

int main(int argc, char* argv[])
{

HRESULT hr = S_OK;

© 2008 Altova GmbH

COM Interface 35Usage

AltovaXML 2008

hr = CoInitialize(NULL);
if (hr == S_OK)
{

IApplicationPtr ipApplication;

hr = CoCreateInstance(
__uuidof(Application

),
NULL,
CLSCTX_ALL,
__uuidof(IApplication),

reinterpret_cast<void**>(&ipApplication)
);

if (hr == S_OK)
{

IXQueryPtr ipXQuery;
hr = ipApplication->get_XQuery(&ipXQuery);

if (hr == S_OK)
{

CComBSTR sXQExpr("(1 to 10)[. mod 2 != 0]");
BSTR bstrResult;

hr = ipXQuery->put_XQueryFromText(sXQExpr);
hr = ipXQuery->ExecuteAndGetResultAsString(

&bstrResult);

std::cout << (char*)_bstr_t(bstrResult) <<
std::endl;

ipXQuery.Release();
}

ipApplication.Release();
}

CoUninitialize();
}
return 0;

}

36 Usage Java Interface

© 2008 Altova GmbHAltovaXML 2008

2.3 Java Interface

The AltovaXML Java interface (AltovaXML.jar) connects to the AltovaXML COM interface
using native functions in the AltovaXMLLib.dll. This DLL will have been installed in the
WINDIR\system32\ directory when you install AltovaXML using the AltovaXML installer.
AltovaXML.jar contains the package com.altova.engines, which is the package
containing the Altova engines.

Setup
In order to use the Java interface, add the AltovaXML.jar file to the CLASSPATH. COM
registration is done automatically by the AltovaXML Installer. If you change the location of the
file AltovaXML_COM.exe after installation, you should register AltovaXML as a COM server
object by running the command AltovaXML_COM.exe /regserver. See Registering
AltovaXML as a COM Server Object for more details.

Documentation
This section contains a detailed description of the AltovaXML Java interface. This
documentation is also available in HTML format in the ZIP archive, AltovaXMLJavaDocs.zip
, which is located in the AltovaXML2008 application folder.

Examples
For detailed examples, see the example files in the Examples folder in the application folder.

The com.altova.engines package
To use the Java interface, your starting point is the package com.altova.engines. This is
the Java interface for the AltovaXML COM server object; it provides access to XMLValidator
and to the XSLT 1.0, XSLT 2.0 and XQuery 1.0 engines.

The com.altova.engines package provides connection to the AltovaXML COM interface
using the native functions in AltovaXMLLib.dll, which is installed in the
WINDIR\system32\ directory.

To connect to a new instance of AltovaXML COM server object, use the static method
getInstance() of the AltovaXMLFactory class. From the returned interface you can
choose the required engine using the getENGINENAMEInstance() function.

Given below is a sample of code that uses the Java interface:

import com.altova.engines.*;

/**
 * Test application for AltovaXML COM components java interface
 */
public class AltovaXMLTest {
 /**
 * public constructor for AltovaXMLTest
 */
 public AltovaXMLTest(){
 }

 /**
 * application main
 */
 public static void main(String[] args) {

© 2008 Altova GmbH

Java Interface 37Usage

AltovaXML 2008

 System.out.println("AltovaXML Java Interface Test Application");

 //request a COM server object - fails if AltovaXML is not registered
 IAltovaXMLFactory objXmlApp = AltovaXMLFactory.getInstance();

 if (objXmlApp != null) {
 //get interface for the XQuery engine
 IXQuery xquery = objXmlApp.getXQueryInstance();
 //set XQuery statement
 xquery.setXQueryStatement("<doc><a>{1 to 3}This data is
well-formed.</doc>");
 //execute the statement previously set.
 //There was no input XML specified so the initial context is
empty.
 String sres = xquery.executeAndGetResultAsString();
 //release XQuery engine's connection to the COM server object
 xquery.releaseInstance();
 System.out.println(sres);

 IXMLValidator validator = objXmlApp.getXMLValidatorInstance();
 validator.setInputXMLFromText(sres);
 boolean b = validator.isWellFormed();
 if (b)
 System.out.println("XML data is well-formed.");
 else
 System.out.println("Data is not well-formed.");
 validator.releaseInstance();

 //release Application object connection to the COM server object.
 //After this the COM server object will shut down automatically.
 objXmlApp.releaseInstance();
 } else{
 System.out.println("Creating instance of IAltovaXMLFactory
failed.");
 System.out.println("Please make sure AltovaXML.exe is correctly
registered!");
 }
 }
}

38 Usage Java Interface

© 2008 Altova GmbHAltovaXML 2008

2.3.1 Interfaces

Given below is a summary of the interfaces of com.altova.engines. Detailed descriptions
are given in the respective sections.

 IAltovaXMLEngine
Basic interface for XMLValidator, and XSLT 1.0, XSLT 2.0, and XQuery 1.0 engines.

 IAltovaXMLFactory
Interface for AltovaXML COM object wrapper.

 IExecutable
Executable interface for engines.

 IReleasable
Interface for Release functionality.

 IXMLValidator
Interface for XMLValidator.

 IXQuery
Interface for the XQuery 1.0 engine.

 IXSLT
Interface for the XSLT engines.

IAltovaXMLEngine

Basic interface for XMLValidator, XSLT 1.0, XSLT 2.0 and XQuery engines. Public interface

that extends IReleasable.

Superinterface: IReleasable
Subinterface: XMLValidator, IXQuery, IXSLT
Implementing classes: XMLValidator, XQuery, XSLT1, XSLT2

Methods
The following methods are defined.

setInputXMLFileName
public void setInputXMLFileName(java.lang.String filename)

Sets the file name for the input XML data. Please note that you have to use absolute URLs.
Parameters:
filename: an absolute URL giving the base location of the XML data.

setInputXMLFromText
public void setInputXMLFromText(java.lang.String text)
Sets the text value for the input XML data. For example: setInputXMLFromText("<doc>

<a>text </doc>")
Parameters:
text: a string containing XML data.

getLastErrorMessage
public java.lang.String getLastErrorMessage()

Gets the last error message from the engine.
Returns:
a string containing the last error message.

© 2008 Altova GmbH

Java Interface 39Usage

AltovaXML 2008

IAltovaXMLFactory

Interface for AltovaXML COM object wrapper. Provides access to the interfaces of
XMLValidator, XSLT 1.0, XSLT 2.0 and Xquery 1.0 engines. Public interface that extends

IReleasable.

Superinterface: IReleasable
Implementing classes: AltovaXMLFactory

Methods
The following methods are defined.

getXQueryInstance
public IXQuery getXQueryInstance()
Creates a new instance of XQuery class for the current XQuery engine instance. The object's
connection to the engine must be released after use. To do this, use the function

releaseInstance() declared in the IReleasable interface.
Returns:
the IXQuery interface of the newly created class.

getXSLT1Instance
public IXSLT getXSLT1Instance()
Creates a new instance of XSLT1 class for the current XSLT 1.0 engine instance. The object's
connection to the engine must be released after use. To do this, use the function

releaseInstance() declared in the IReleasable interface.
Returns:
the IXSLT interface of the newly created class.

getXSLT2Instance
public IXSLT getXSLT2Instance()
Creates a new instance of XSLT2 class for the current XSLT 2.0 engine instance. The object's
connection to the engine must be released after use. To do this, use the function

releaseInstance() declared in the IReleasable interface.
Returns:
the IXSLT interface of the newly created class.

getXMLValidatorInstance
public IXMLValidator getXMLValidatorInstance()
Creates a new instance of XMLValidator class for the current XML Validator instance. The

object's connection to the engine must be released after use. To do this, use the function

releaseInstance() declared in the IReleasable interface.
Returns:
the IXMLValidator interface of the newly created class.

IExecutable

Executable interface for engines. Public interface.

40 Usage Java Interface

© 2008 Altova GmbHAltovaXML 2008

Subinterface: IXQuery, IXSLT
Implementing classes: XQuery, XSLT1, XSLT2

Methods
The following methods are defined.

execute
public boolean execute(java.lang.String outfilename)
Executes and saves the result to file. In case of an error, you can use the function

getLastErrorMessage() declared in IAltovaXMLEngine to get additional information.
Parameters:
outfilename: an absolute URL giving the location of the output file.
Returns:
true on success, false on error.

executeAndGetResultAsString
public java.lang.String executeAndGetResultAsString()

Executes and returns the result as string. In case of an error, you can use the function

getLastErrorMessage() declared in IAltovaXMLEngine to get additional information.
Returns:
string containing the serialized result. On error, will return the empty string.

IReleasable

Public interface for Release functionality. When an object implementing this interface is not
used any more, then the releaseInstance() function must be called in order to release
connection to the COM server. The COM server will shut down automatically when all
connections to it are released.

Subinterface: IXQuery, IXSLT
Implementing classes: XQuery, XSLT1, XSLT2

Methods
The following methods are defined.

releaseInstance
public void releaseInstance()

Releases the object's connection to the COM server.

IXMLValidator

Interface for the XML Validator. Public interface that extends IAltovaXMLEngine.

Superinterface: IAltovaXMLEngine, IReleasable
Implementing classes: XMLValidator

Methods
The following methods are defined.

isValid

© 2008 Altova GmbH

Java Interface 41Usage

AltovaXML 2008

public boolean isValid()
Validates the input XML data against the DTD/Schema specified in it.
Returns:
true on success, false on failure. In case of failure, you can use the function
getLastErrorMessage() declared in IAltovaXMLEngine to get additional information.

isWellFormed
public boolean isWellFormed()
Checks the input XML data for well-formedness.
Returns:
true on success, false on failure. In case of failure, you can use the function
getLastErrorMessage() declared in IAltovaXMLEngine to get additional information.

isValidWithExternalSchemaOrDTD
public boolean isValidWithExternalSchemaOrDTD()
Validates the input XML data against the external DTD/Schema which can be specified with the
functions setDTDFileName(), setDTDFromText(), setSchemaFileName(),
setSchemaFromText().
Returns:
true on success, false on failure. In case of failure, you can use the function
getLastErrorMessage() declared in IAltovaXMLEngine to get additional information.

setSchemaFileName
public void setSchemaFileName(java.lang.String filename)
Sets file name for external Schema.
Parameters:
filename: an absolute URL giving the base location of the Schema

setDTDFileName
public void setDTDFileName(java.lang.String filename)
Sets file name for external DTD.
Parameters:
filename: an absolute URL giving the base location of the DTD.

setSchemaFromText
public void setSchemaFromText(java.lang.String text)
Sets text value for external Schema.
Parameters:
text: string containing Schema as text.

setDTDFromText
public void setDTDFromText(java.lang.String text)
Sets text value for external DTD.
Parameters:
text: string containing DTD as text.

42 Usage Java Interface

© 2008 Altova GmbHAltovaXML 2008

IXQuery

Interface for the XQuery engine. Public interface that extends IAltovaXMLEngine and

IExecutable.

Superinterface: IAltovaXMLEngine, IExecutable, IReleasable
Implementing classes: XQuery

Methods
The following methods are defined.

setXQueryFileName
public void setXQueryFileName(java.lang.String filename)
Sets the file name of the XQuery document.
Parameters:
filename: an absolute URL giving the base location of the XQuery file.

setXQueryStatement
public void setXQueryStatement(java.lang.String text)
Sets the text value of the XQuery statement.
Parameters:
text: a string containing the XQuery statement.

setOutputEncoding
public void setOutputEncoding(java.lang.String encoding)
Sets the encoding of the result document.
Parameters:
encoding: a string containing the name of the encoding name (for example: UTF-8, UTF-16,
ASCII, 8859-1, 1252).

getOutputEncoding
public java.lang.String getOutputEncoding()
Retrieves the encoding specified for the result document.
Returns:
a string containing an encoding name.

setOutputIndent
public void setOutputIndent(boolean indent)
Enables/disables the indentation option for the result document.
Parameters:
indent: boolean value to enable/disable output indentation.

getOutputIndent
public boolean getOutputIndent()
Retrieves the output indent option specified for the result document.
Returns:
boolean value indicating whether output is indented (true) or not (false).

setOutputMethod

© 2008 Altova GmbH

Java Interface 43Usage

AltovaXML 2008

public void setOutputMethod(java.lang.String method)
Sets the serialization method for the result document.
Parameters:
method: a string containing the serialization method. (Valid values are: xml, xhtml, html,
text).

getOutputMethod
public java.lang.String getOutputMethod()
Retrieves the serialization method for the result document.
Returns:
a string containing the serialization method for the output document.

setOutputOmitXMLDeclaration
public void setOutputOmitXMLDeclaration(boolean decl)
Enables/disables the serialization option omitXMLDeclaration for the result document.
Parameters:
decl: new boolean value for the omit-xml-declaration parameter.

getOutputOmitXMLDeclaration
public boolean getOutputOmitXMLDeclaration()
Retrieve the value of omitXMLDeclaration option specified for the result document.
Returns:
boolean value indicating whether output document contains an XML declaration (true) or not (
false).

addExternalVariable
public void addExternalVariable(java.lang.String name,
 java.lang.String val)
Add name and value for an external variable.
Parameters:
name: a string containing a valid QName as the variable name.
val: a string containing the value of the variable; the value will be used as a string.

addExternalVariableAsXPath
public void addExternalVariableAsXPath(java.lang.String name,
 java.lang.String val)
Add name and value for an external variable, with value being evaluated as an XPath 2.0
expression.
Parameters:
name: a string containing a valid QName as the variable name.
val: a string containing the value of the variable; the value will be evaluated as an XPath 2.0
expression.

clearExternalVariableList
public void clearExternalVariableList()
Clears the list of external variables.

44 Usage Java Interface

© 2008 Altova GmbHAltovaXML 2008

IXSLT

Interface for the XSLT engines. Public interface that extends IAltovaXMLEngine and

IExecutable.

Superinterface: IAltovaXMLEngine, IExecutable, IReleasable
Implementing classes: XSLT1 and XSLT2

Note: The XSLT 2.0 Engine can be used in its backward compatibility mode to process an
XSLT 1.0 stylesheet. The output, however, could be different than that produced by the
XSLT 1.0 Engine processing the same XSLT 1.0 stylesheet.

Methods
The following methods are defined.

setXSLTFileName
public void setXSLTFileName(java.lang.String name)
Sets the file name for the XSLT data.
Parameters:
name: an absolute URL giving the base location of the XSLT data file.

setXSLTFromText
public void setXSLTFromText(java.lang.String text)
Sets text value for the XSLT data.
Parameters:
text: a string containing serialized XSLT data.

addExternalParameter
public void addExternalParameter(java.lang.String name,
 java.lang.String val)
Adds the name and value of an external parameter.
Parameters:
name: a string containing a valid QName as the parameter name.
val: a string containing the value of the parameter; the value will be evaluated as an XPath
expression.

clearExternalParameterList
public void clearExternalParameterList()
Clears the list of external parameters.

setXSLTStackSize
public void addExternalParameter(long nVal)
The stack size is the maximum depth of executed instructions. If the stack size is exceeded
during a transformation, an error is reported.
Parameters:
nVal: numeric value for new stack size. Must be greater tha 100. The initial value 1000.

© 2008 Altova GmbH

Java Interface 45Usage

AltovaXML 2008

2.3.2 Classes

Given below is a summary of the classes of com.altova.engines. Detailed descriptions are
given in the respective sections.

 AltovaXMLFactory
Creates new AltovaXML COM server object instance via native call, and provides
access to AltovaXML engines.

 XMLValidator
Class holding XMLValidator.

 XQuery
Class holding the XQuery 1.0 Engine.

 XSLT1
Class holding the XSLT 1.0 Engine.

 XSLT2
Class holding the XSLT 2.0 Engine.

AltovaXMLFactory

public class AltovaXMLFactory
extends java.lang.Object
implements IAltovaXMLFactory

Iplemented interfaces: IAltovaXMLFactory, IReleasable

Description
Creates new AltovaXML COM server object instance via native call, and provides access to the
AltovaXML engines. The relationship between AltovaXMLFactory and the AltovaXML COM
object is one-to-one. This means that subsequent calls to the getENGINENAMEInstance()
function will return interfaces for the same engine instance.

Methods
The following methods are defined.

getInstance
public static IAltovaXMLFactory getInstance()
Creates a new AltovaXMLFactory object and connects it to a new AltovaXML COM server
object.
Returns:
the interface IAltovaXMLFactory for the newly created AltovaXMLFactory object or null if
the creation of the COM object failed. In the latter case you should make sure that
AltovaXML.exe is properly registered as a COM server object.

releaseInstance
public void releaseInstance()
Releases the object's connection to the COM server.
Specified by:
releaseInstance in interface IReleasable.

getXQueryInstance
public IXQuery getXQueryInstance()

46 Usage Java Interface

© 2008 Altova GmbHAltovaXML 2008

Creates a new instance of XQuery class for the current XQuery engine instance. The object's
connection to the engine must be released after use. To do this, use the function
releaseInstance() declared in the IReleasable interface.
Specified by:
getXQueryInstance in interface IAltovaXMLFactory.
Returns:
the IXQuery interface of the newly created class.

getXSLT1Instance
public IXSLT getXSLT1Instance()
Creates a new instance of XSLT1 class for the current XSLT 1.0 engine instance. The object's
connection to the engine must be released after use. To do this, use the function
releaseInstance() declared in the IReleasable interface.
Specified by:
getXSLT1Instance in interface IAltovaXMLFactory.
Returns:
the IXSLT interface of the newly created class.

getXSLT2Instance
public IXSLT getXSLT2Instance()
Creates a new instance of XSLT2 class for the current XSLT 2.0 engine instance. The object's
connection to the engine must be released after use. To do this, use the function
releaseInstance() declared in the IReleasable interface.
Specified by:
getXSLT2Instance in interface IAltovaXMLFactory.
Returns:
the IXSLT interface of the newly created class.

getXMLValidatorInstance
public IXMLValidator getXMLValidatorInstance()
Creates a new instance of XMLValidator class for the current XML Validator instance. The
object's connection to the engine must be released after use. To do this, use the function
releaseInstance() declared in the IReleasable interface.
Specified by:
getXMLValidatorInstance in interface IAltovaXMLFactory.
Returns:
the IXMLValidator interface of the newly created class.

XMLValidator

public class XMLValidator
extends java.lang.Object
implements IXMLValidator

Iplemented interfaces: IAltovaXMLEngine, IReleasable, IXMLValidator

Description
Class holding XMLValidator. No direct construction/access possible. Get the IXMLValidator
interface to it by calling the function getXMLValidatorInstance() on an instance of
IAltovaXMLFactory.

© 2008 Altova GmbH

Java Interface 47Usage

AltovaXML 2008

Constructors
The following constructor is defined.

XMLValidator
protected XMLValidator(long nValidatorPtr)

Methods
The following methods are defined.

releaseInstance
public void releaseInstance()
Releases the object's connection to the COM server.
Specified by:
releaseInstance in interface IReleasable.

setInputXMLFileName
public void setInputXMLFileName(java.lang.String str)
Sets the file name for the input XML data. Note that you must use absolute URLs.
Specified by:
setInputXMLFileName in interface IAltovaXMLEngine.
Parameters:
str: an absolute URL giving the base location of the XML data.

setInputXMLFromText
public void setInputXMLFromText(java.lang.String str)
Sets the text value for the input XML data. Example: setInputXMLFromText("<doc>
<a>text </doc>")
Specified by:
setInputXMLFromText in interface IAltovaXMLEngine.
Parameters:
str: a string containing XML data.

getLastErrorMessage
public java.lang.String getLastErrorMessage()
Gets the last error message from the engine.
Specified by:
getLastErrorMessage in interface IAltovaXMLEngine.
Returns:
a string containing the last error message.

isValid
public boolean isValid()
Validates the input XML data against the DTD/Schema specified in it.
Specified by:
isValid in interface IXMLValidator.
Returns:
true on success, false on failure. In case of failure, you can use the function
getLastErrorMessage declared in IAltovaXMLEngine to get additional information.

48 Usage Java Interface

© 2008 Altova GmbHAltovaXML 2008

isWellFormed
public boolean isWellFormed()
Checks the input XML data for well-formedness.
Specified by:
isWellFormed in interface IXMLValidator.
Returns:
true on success, false on failure. In case of failure, you can use the function
getLastErrorMessage declared in IAltovaXMLEngine to get additional information.

isValidWithExternalSchemaOrDTD
public boolean isValidWithExternalSchemaOrDTD()
Validates the input XML data against the external DTD/Schema, which can be specified with the
functions setDTDFileName(), setDTDFromText(), setSchemaFileName(), and
setSchemaFromText(). For a description of these functions, see below.
Specified by:
isValidWithExternalSchemaOrDTD in interface IXMLValidator.
Returns:
true on success, false on failure. In case of failure, you can use the function
getLastErrorMessage declared in IAltovaXMLEngine to get additional information.

setSchemaFileName
public void setSchemaFileName(java.lang.String str)
Set file name of external Schema.
Specified by:
setSchemaFileName in interface IXMLValidator.
Parameters:
str: an absolute URL giving the base location of the Schema.

setDTDFileName
public void setDTDFileName(java.lang.String str)
Set file name of external DTD.
Specified by:
setDTDFileName in interface IXMLValidator.
Parameters:
str: an absolute URL giving the base location of the DTD.

setSchemaFromText
public void setSchemaFromText(java.lang.String str)
Sets text value for external Schema.
Specified by:
setSchemaFromText in interface IXMLValidator.
Parameters:
str: a string containing Schema as text.

setDTDFromText
public void setDTDFromText(java.lang.String str)
Sets text value for external DTD.

© 2008 Altova GmbH

Java Interface 49Usage

AltovaXML 2008

Specified by:
setDTDFromText in interface IXMLValidator.
Parameters:
str: a string containing DTD as text.

XQuery

public class XQuery
extends java.lang.Object
implements IXQuery

Iplemented interfaces: IAltovaXMLEngine, IExecutable, IReleasable, IXQuery

Description
Class holding the XQuery 1.0 engine. No direct construction/access possible. Get the IXQuery
interface to it by calling the function getXQueryInstance() on an instance of

IAltovaXMLFactory.

Constructors
The following constructor is defined.

XQuery
protected XQuery(long nXQueryPtr)

Methods
The following methods are defined.

releaseInstance
public void releaseInstance()
Releases the object's connection to the COM server.
Specified by:
releaseInstance in interface IReleasable.

execute
public boolean execute(java.lang.String sOutFile)
Executes and saves the result to file. In case of an error, you can use the function
getLastErrorMessage() declared in IAltovaXMLEngine to get additional information.
Specified by:
execute in interface IExecutable.
Parameters:
sOutFile: an absolute URL giving the location of the output file.
Returns:
true on success, false on error.

executeAndGetResultAsString
public java.lang.String executeAndGetResultAsString()
Executes and returns the result as a UTF-16 text string. In case of an error, you can use the
function getLastErrorMessage() declared in IAltovaXMLEngine to get additional
information.

50 Usage Java Interface

© 2008 Altova GmbHAltovaXML 2008

Specified by:
executeAndGetResultAsString in interface IExecutable.
Returns:
string containing the serialized result. On error, will return the empty string.

setInputXMLFileName
public void setInputXMLFileName(java.lang.String str)
Sets the file name for the input XML data. Note that you must use absolute URLs.
Specified by:
setInputXMLFileName in interface IAltovaXMLEngine.
Parameters:
str: an absolute URL giving the base location of the XML data.

setInputXMLFromText
public void setInputXMLFromText(java.lang.String str)
Sets the text value for the input XML data. Example: setInputXMLFromText("<doc>
<a>text </doc>").
Specified by:
setInputXMLFromText in interface IAltovaXMLEngine.
Parameters:
str: a string containing XML data.

getLastErrorMessage
public java.lang.String getLastErrorMessage()
Gets the last error message from the engine.
Specified by:
getLastErrorMessage in interface IAltovaXMLEngine.
Returns:
a string containing the last error message.

setXQueryFileName
public void setXQueryFileName(java.lang.String str)
Sets file name of the XQuery document.
Specified by:
setXQueryFileName in interface IXQuery.
Parameters:
str: an absolute URL giving the base location of the XQuery file.

setXQueryStatement
public void setXQueryStatement(java.lang.String str)
Sets the text value for the XQuery statement.
Specified by:
setXQueryStatement in interface IXQuery
Parameters:
str: a string containing the XQuery statement.

setOutputEncoding
public void setOutputEncoding(java.lang.String str)

© 2008 Altova GmbH

Java Interface 51Usage

AltovaXML 2008

Sets the encoding for the result document.
Specified by:
setOutputEncoding in interface IXQuery.
Parameters:
str: a string containing an encoding name (for example: UTF-8, UTF-16, ASCII, 8859-1,
1252)

getOutputEncoding
public java.lang.String getOutputEncoding()
Retrieves the encoding specified for the result document.
Specified by:
getOutputEncoding in interface IXQuery.
Returns:
a string containing the encoding name.

setOutputIndent
public void setOutputIndent(boolean bVal)
Enables/disables the indentation option for the result document.
Specified by:
setOutputIndent in interface IXQuery.
Parameters:
bVal: boolean value to enable/disable indentation.

getOutputIndent
public boolean getOutputIndent()
Retrieves the output indent option specified for the result document.
Specified by:
getOutputIndent in interface IXQuery.
Returns:
the current value of the indent serialization parameter.

setOutputMethod
public void setOutputMethod(java.lang.String str)
Sets the serialization method for the result document.
Specified by:
setOutputMethod in interface IXQuery.
Parameters:
str: a string containing the serialization method. Valid values: xml, xhtml, html, text.

getOutputMethod
public java.lang.String getOutputMethod()
Retrieves the serialization method for the result document.
Specified by:
getOutputMethod in interface IXQuery.
Returns:
the current serialization method.

setOutputOmitXMLDeclaration

52 Usage Java Interface

© 2008 Altova GmbHAltovaXML 2008

public void setOutputOmitXMLDeclaration(boolean bVal)
Enables/disables the serialization option omitXMLDeclaration for the result document.
Specified by:
setOutputOmitXMLDeclaration in interface IXQuery.
Parameters:
bVal: a new boolean value for the omit-xml-declaration parameter.

getOutputOmitXMLDeclaration
public boolean getOutputOmitXMLDeclaration()
Retrieves the value of omitXMLDeclaration option specified for the result document.
Specified by:
getOutputOmitXMLDeclaration in interface IXQuery.
Returns:
boolean value of the omit-xml-declaration parameter.

addExternalVariable
public void addExternalVariable(java.lang.String strName,
 java.lang.String strVal)
Adds the name and value of an external variable.
Specified by:
addExternalVariable in interface IXQuery.
Parameters:
strName: a string containing a valid QName as the variable name.
strVal: a string containing the value of the variable; this value will be used as a string.

addExternalVariableAsXPath
public void addExternalVariableAsXPath(java.lang.String strName,
 java.lang.String strVal)
Add name and value for an external variable, with value being evaluated as an XPath 2.0
expression.

Specified by:
addExternalVariableAsXPath in interface IXQuery.
Parameters:
strName: a string containing a valid QName as the variable name.
strVal: a string containing the value of the variable; the value will be evaluated as an XPath
2.0 expression.

clearExternalVariableList
public void clearExternalVariableList()
Clear the list of external variables.
Specified by:
clearExternalVariableList in interface IXQuery.

XSLT1

public class XSLT1
extends java.lang.Object
implements IXSLT

Iplemented interfaces: IAltovaXMLEngine, IExecutable, IReleasable, IXSLT

© 2008 Altova GmbH

Java Interface 53Usage

AltovaXML 2008

Description
Class holding the XSLT 1.0 engine. No direct construction/access possible. Get the IXSLT
interface to it by calling the function getXSLT1Instance() on an instance of

IAltovaXMLFactory.

Constructors
The following constructor is defined.

XSLT1
protected XSLT1(long nXSLT1Ptr)

Methods
The following methods are defined.

releaseInstance
public void releaseInstance()
Releases the object's connection to the COM server.
Specified by:
releaseInstance in interface IReleasable.

execute
public boolean execute(java.lang.String sOutFile)
Executes and saves the result to file. In case of an error, you can use the function
getLastErrorMessage() declared in IAltovaXMLEngine to get additional information.
Specified by:
execute in interface IExecutable.
Parameters:
sOutFile: an absolute URL giving the location of the output file.
Returns:
true on success, false on error.

executeAndGetResultAsString
public java.lang.String executeAndGetResultAsString()
Executes and returns the result as a UTF-16 text string. In case of an error, you can use the
function getLastErrorMessage() declared in IAltovaXMLEngine to get additional
information.
Specified by:
executeAndGetResultAsString in interface IExecutable.
Returns:
string containing the serialized result. On error, will return the empty string.

setInputXMLFileName
public void setInputXMLFileName(java.lang.String str)
Sets the file name for the input XML data. Note that you have to use absolute URLs.
Specified by:
setInputXMLFileName in interface IAltovaXMLEngine.
Parameters:
str: an absolute URL giving the base location of the XML data.

54 Usage Java Interface

© 2008 Altova GmbHAltovaXML 2008

setInputXMLFromText
public void setInputXMLFromText(java.lang.String str)
Sets the text value for the input XML data. Example: setInputXMLFromText("<doc>
<a>text </doc>").
Specified by:
setInputXMLFromText in interface IAltovaXMLEngine.
Parameters:
str: a string containing XML data.

getLastErrorMessage
public java.lang.String getLastErrorMessage()
Gets the last error message from the engine.
Specified by:
getLastErrorMessage in interface IAltovaXMLEngine.
Returns:
a string containing the last error message.

setXSLTFileName
public void setXSLTFileName(java.lang.String str)
Sets the file name for the XSLT data.
Specified by:
setXSLTFileName in interface IXSLT.
Parameters:
str: an absolute URL giving the base location of the XSLT data

setXSLTFromText
public void setXSLTFromText(java.lang.String str)
Sets the text value for the XSLT data.
Specified by:
setXSLTFromText in interface IXSLT.
Parameters:
str: a string containing serialized XSLT data.

addExternalParameter
public void addExternalParameter(java.lang.String strName,
 java.lang.String strVal)
Adds the name and value of an external parameter.
Specified by:
addExternalParameter in interface IXSLT.
Parameters:
strName: a string containing a valid QName as the parameter name.
strVal: a string containing the value of the parameter; this value will be evaluated as an XPath
expression.

clearExternalParameterList
public void clearExternalParameterList()
Clears the list of external parameters.
Specified by:
clearExternalParameterList in interface IXSLT.

© 2008 Altova GmbH

Java Interface 55Usage

AltovaXML 2008

setXSLTStackSize
public void addExternalParameter(long nVal)
The stack size is the maximum depth of executed instructions. If the stack size is exceeded
during a transformation, an error is reported.
Specified by:
setXSLTStackSize in interface IXSLT.
Parameters:
nVal: numeric value for new stack size. Must be greater tha 100. The initial value 1000.

XSLT2

public class XSLT2
extends java.lang.Object
implements IXSLT

Iplemented interfaces: IAltovaXMLEngine, IExecutable, IReleasable, IXSLT

Description
Class holding the XSLT 2.0 engine. No direct construction/access possible. Get the IXSLT
interface to it by calling the function getXSLT2Instance() on an instance of

IAltovaXMLFactory. Note that the XSLT 2.0 Engine can be used in its backward
compatibility mode to process an XSLT 1.0 stylesheet. The output, however, could be different
than that produced by the XSLT 1.0 Engine processing the same XSLT 1.0 stylesheet.

Constructors
The following constructor is defined.

XSLT2
protected XSLT2(long nXSLT2Ptr)

Methods
The following methods are defined.

releaseInstance
public void releaseInstance()
Releases the object's connection to the COM server.
Specified by:
releaseInstance in interface IReleasable.

execute
public boolean execute(java.lang.String sOutFile)
Executes and saves the result to file. In case of an error, you can use the function
getLastErrorMessage() declared in IAltovaXMLEngine to get additional information.
Specified by:
execute in interface IExecutable.
Parameters:
sOutFile: an absolute URL giving the location of the output file.
Returns:
true on success, false on error.

56 Usage Java Interface

© 2008 Altova GmbHAltovaXML 2008

executeAndGetResultAsString
public java.lang.String executeAndGetResultAsString()
Executes and returns the result as a UTF-16 text string. In case of an error, you can use the
function getLastErrorMessage() declared in IAltovaXMLEngine to get additional
information.
Specified by:
executeAndGetResultAsString in interface IExecutable.
Returns:
string containing the serialized result. On error, will return the empty string.

setInputXMLFileName
public void setInputXMLFileName(java.lang.String str)
Sets the file name for the input XML data. Note that you have to use absolute URLs.
Specified by:
setInputXMLFileName in interface IAltovaXMLEngine.
Parameters:
str: an absolute URL giving the base location of the XML data.

setInputXMLFromText
public void setInputXMLFromText(java.lang.String str)
Sets the text value for the input XML data. Example: setInputXMLFromText("<doc>
<a>text </doc>").
Specified by:
setInputXMLFromText in interface IAltovaXMLEngine.
Parameters:
str: a string containing XML data.

getLastErrorMessage
public java.lang.String getLastErrorMessage()
Gets the last error message from the engine.
Specified by:
getLastErrorMessage in interface IAltovaXMLEngine.
Returns:
a string containing the last error message.

setXSLTFileName
public void setXSLTFileName(java.lang.String str)
Sets the file name for the XSLT data.
Specified by:
setXSLTFileName in interface IXSLT.
Parameters:
str: an absolute URL giving the base location of the XSLT data

setXSLTFromText
public void setXSLTFromText(java.lang.String str)
Sets the text value for the XSLT data.
Specified by:
setXSLTFromText in interface IXSLT.
Parameters:

© 2008 Altova GmbH

Java Interface 57Usage

AltovaXML 2008

str: a string containing serialized XSLT data.

addExternalParameter
public void addExternalParameter(java.lang.String strName,
 java.lang.String strVal)
Adds the name and value of an external parameter.
Specified by:
addExternalParameter in interface IXSLT.
Parameters:
strName: a string containing a valid QName as the parameter name.
strVal: a string containing the value of the parameter; this value will be evaluated as an XPath
expression.

clearExternalParameterList
public void clearExternalParameterList()
Clears the list of external parameters.
Specified by:
clearExternalParameterList in interface IXSLT.

setXSLTStackSize
public void addExternalParameter(long nVal)
The stack size is the maximum depth of executed instructions. If the stack size is exceeded
during a transformation, an error is reported.
Specified by:
setXSLTStackSize in interface IXSLT.
Parameters:
nVal: numeric value for new stack size. Must be greater tha 100. The initial value 1000.

58 Usage .NET Interface

© 2008 Altova GmbHAltovaXML 2008

2.4 .NET Interface

The .NET interface is built as a wrapper around the AltovaXML COM interface. It is provided as
a primary interop assembly signed by Altova and using the namespace Altova.AltovaXML.
In order to use AltovaXML in your .NET project, you need to: (i) add a reference to the
AltovaXML DLL (which is called Altova.AltovaXML.dll) in your project, and (ii) have
AltovaXML registered as a COM server object. Once these requirements (which are described
below) have been met, you can use the AltovaXML functionality in your project.

Adding the AltovaXML DLL as a reference to the project
The AltovaXML package contains a signed DLL file, named Altova.AltovaXML.dll, which
will automatically be added to the global assembly cache (and the .NET reference library) when
AltovaXML is installed using the AltovaXML installer. (It will be located typically in the
C:\WINDOWS\assembly folder.) To add this DLL as a reference in a .NET project, do the
following:

1. With the .NET project open, click Project | Add Reference. The Add Reference dialog
(screenshot below) pops up, displaying a list of installed .NET components.

2. Select Altova.AltovaXML from the component list, double-click it or press the Select
button, then click OK.

Registering AltovaXML as a COM server object
COM registration is done automatically by the AltovaXML Installer. If you change the location of
the file AltovaXML_COM.exe after installation, you should register AltovaXML as a COM
server object by running the command AltovaXML_COM.exe /regserver. (Note that the
correct path to the AltovaXML_COM.exe must be entered. See Registering AltovaXML as a
COM Server Object for more details.)

© 2008 Altova GmbH

.NET Interface 59Usage

AltovaXML 2008

Once the Altova.AltovaXML.dll is available to the .NET interface and AltovaXML has
been registered as a COM server object, AltovaXML functionality will be available in your .NET
project.

60 Usage .NET Interface

© 2008 Altova GmbHAltovaXML 2008

2.4.1 General Usage and Example

The classes and methods you can use are as described in the COM Interface section, but are in
the namespace Altova.AltovaXML. They are listed in the following sections. The starting
point is the Altova.AltovaXML.Application object. When you create this object, a
connection to a new AltovaXML COM server object is created. The object model is shown in the
diagram below.

Example
How to use the AltovaXML classes and methods in the .NET framework is shown in the C#
code for a button event listed below:

private void button1_Click(object sender, System.EventArgs e)
{

Altova.AltovaXML.ApplicationClass appXML = new
Altova.AltovaXML.ApplicationClass();

Altova.AltovaXML.XMLValidator XMLValidator =
appXML.XMLValidator;

XMLValidator.InputXMLFromText = "<test>Is this data well-formed?
<a></test>";

if (XMLValidator.IsWellFormed())
{
MessageBox.Show(this, "The input data is well-formed") ;
}
else
{
MessageBox.Show(this, "The input data is not well-formed") ;
}

}

The code listing above does the following:

1. The Altova.AltovaXML.ApplicationClass object is created, which creates a
connection to a new AltovaXML COM server object.

2. The XML Validator functionality is called using Altova.AltovaXML.XMLValidator.

© 2008 Altova GmbH

.NET Interface 61Usage

AltovaXML 2008

3. The InputXMLFromText property of Altova.AltovaXML.XMLValidator submits
the input XML data.

4. The IsWellFormed method of Altova.AltovaXML.XMLValidator checks
whether the submitted XML data is well-formed, returning TRUE or FALSE.

For more detailed examples, see the example files in the Examples folder in the application
folder.

62 Usage .NET Interface

© 2008 Altova GmbHAltovaXML 2008

2.4.2 Altova.AltovaXML.XMLValidator

Description
The Altova.AltovaXML.XMLValidator object provides methods to test:

 The well-formedness of an XML document.
 The validity of an XML document against a DTD or XML Schema referenced from

within the XML document.
 The validity of an XML document against a DTD or XML Schema supplied externally via

the code.

All these methods return Boolean TRUE or FALSE.

Note: Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the calling
module.

Methods
The following methods are available:

IsWellFormed
IsWellFormed checks the well-formedness of the XML document. Returns TRUE if the XML
document is well-formed, FALSE if it is not well-formed.

IsValid
IsValid validates the XML document against the DTD or XML Schema referenced in the XML
document. Returns TRUE if the XML document is valid, FALSE if invalid. To validate against a
DTD or XML Schema not referenced in the XML document, use the method
IsValidWithExternalSchemaOrDTD.

IsValidWithExternalSchemaOrDTD
IsValidWithExternalSchemaOrDTD validates the XML document against the DTD or XML
Schema supplied by any one of the following properties: SchemaFileName, DTDFileName,
SchemaFromText, or DTDFromText. If more than one of these properties has values set for it,
then the IsValidWithExternalSchemaOrDTD method uses the property that has been set
last. Returns TRUE if the XML document is valid, FALSE if invalid. To validate against a DTD or
XML Schema referenced in the XML document, use the method IsValid.

Note: Validation and well-formedness checks must always occur after assigning the XML
and/or DTD or XML Schema document to the respective properties.

Properties
The following properties are defined:

InputXMLFileName
A string input that is read as a URL to locate the XML file to be validated.

SchemaFileName
A string input that is read as a URL to locate the XML Schema file against which the XML
document is to be validated.

DTDFileName
A string input that is read as a URL to locate the DTD file against which the XML document is to
be validated.

© 2008 Altova GmbH

.NET Interface 63Usage

AltovaXML 2008

InputXMLFromText
A string input that constructs an XML document.

SchemaFromText
A string input that constructs an XML Schema document.

DTDFromText
A string input that constructs a DTD document.

LastErrorMessage
Returns the last error message.

64 Usage .NET Interface

© 2008 Altova GmbHAltovaXML 2008

2.4.3 Altova.AltovaXML.XSLT1

Description
The Altova.AltovaXML.XSLT1 object provides methods and properties to execute an XSLT
1.0 transformation using the Altova XSLT 1.0 Engine. Results can be saved to a file or returned
as a string. The object also enables XSLT parameters to be passed to the XSLT stylesheet.
The URLs of XML and XSLT files can be supplied as strings via the object's properties.
Alternatively, the XML and XSLT documents can be constructed within the code as text strings.

Note: Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the calling
module.

Methods
The following methods are available:

Execute
Execute executes an XSLT 1.0 transformation and saves the result to an output file, the name
and location of which is provided as an input string to the Execute method.

ExecuteAndGetResultAsString
ExecuteAndGetResultAsString executes an XSLT 1.0 transformation and returns the
result as a UTF-16 text string.

AddExternalParameter
Takes a parameter name and the value of this parameter as input arguments. Each external
parameter and its value is to be specified in a separate call to the method. Providing an external
parameter with the name of an existing (uncleared) parameter causes an error. Since
parameter values are XPath expressions, parameter values that are strings must be enclosed
in single quotes.

ClearExternalParameterList
No argument should be provided. The ClearExternalParameterList clears the external
parameters list created with AddExternalParameter methods.

Note: Transformation must always occur after assigning the XML and XSLT documents.

Properties
The following properties are defined:

InputXMLFileName
A string input that is read as a URL to locate the XML file to be transformed.

XSLFileName
A string input that is read as a URL to locate the XSLT file to be used for the transformation.

InputXMLFromText
A string input that constructs an XML document.

XSLFromText
A string input that constructs an XSLT document.

XSLStackSize
The stack size is the maximum depth of executed instructions. The stack size can be changed
with the XSLStackSize property. The minimum allowed stack size is 100. The default stack

© 2008 Altova GmbH

.NET Interface 65Usage

AltovaXML 2008

size is 1000. If the stack size is exceeded during a transformation, an error is reported.

LastErrorMessage
Returns the last error message.

66 Usage .NET Interface

© 2008 Altova GmbHAltovaXML 2008

2.4.4 Altova.AltovaXML.XSLT2

Description
The Altova.AltovaXML.XSLT2 object provides methods and properties to execute an XSLT
2.0 transformation using the Altova XSLT 2.0 Engine. Results can be saved to a file or returned
as a string. The object also enables XSLT parameters to be passed to the XSLT stylesheet.
The URLs of XML and XSLT files can be supplied as strings via the object's properties.
Alternatively, the XML and XSLT documents can be constructed within the code as text strings.

Note:

 Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the
calling module.

 The XSLT 2.0 Engine can be used in its backward compatibility mode to process an
XSLT 1.0 stylesheet. The output, however, could be different than that produced by the
XSLT 1.0 Engine processing the same XSLT 1.0 stylesheet.

Methods
The following methods are available:

Execute
Execute executes an XSLT 2.0 transformation and saves the result to an output file, the name
and location of which is provided as an input string to the Execute method.

ExecuteAndGetResultAsString
ExecuteAndGetResultAsString executes an XSLT 2.0 transformation and returns the
result as a UTF-16 text string.

AddExternalParameter
Takes a parameter name and the value of this parameter as input arguments. Each external
parameter and its value is to be specified in a separate call to the method. Providing an external
parameter with the name of an existing (uncleared) parameter causes an error. Since
parameter values are XPath expressions, parameter values that are strings must be enclosed
in single quotes.

ClearExternalParameterList
No argument should be provided. The ClearExternalParameterList clears the external
parameters list created with AddExternalParameter methods.

Note: Transformation must always occur after assigning the XML and XSLT documents.

Properties
The following properties are defined:

InputXMLFileName
A string input that is read as a URL to locate the XML file to be transformed.

XSLFileName
A string input that is read as a URL to locate the XSLT file to be used for the transformation.

InputXMLFromText
A string input that constructs an XML document.

XSLFromText

© 2008 Altova GmbH

.NET Interface 67Usage

AltovaXML 2008

A string input that constructs an XSLT document.

XSLStackSize
The stack size is the maximum depth of executed instructions. The stack size can be changed
with the XSLStackSize property. The minimum allowed stack size is 100. The default stack
size is 1000. If the stack size is exceeded during a transformation, an error is reported.

LastErrorMessage
Returns the last error message.

68 Usage .NET Interface

© 2008 Altova GmbHAltovaXML 2008

2.4.5 Altova.AltovaXML.XQuery

Description
The Altova.AltovaXML.XQuery object provides methods and properties to execute an
XQuery 1.0 transformation using the Altova XQuery 1.0 Engine. Results can be saved to a file
or returned as a string. The object also enables external XQuery variables to be passed to the
XQuery document. The URLs of XQuery and XML files can be supplied as strings via the
object's properties. Alternatively, the XML and XQuery documents can be constructed within the
code as text strings.

Note: Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the calling
module.

Methods
The following methods are available:

Execute
Execute executes an XQuery 1.0 transformation and saves the result to an output file, the
name and location of which is provided as an input string to the Execute method.

ExecuteAndGetResultAsString
ExecuteAndGetResultAsString executes an XQuery 1.0 transformation and returns the
result as a UTF-16 text string.

AddExternalVariable
Takes a variable name and the value of this variable as input arguments. Each external variable
and its value is to be specified in a separate call to the method. Variables must be declared in
the XQuery document, optionally with a type declaration. Whatever the type declaration for the
external variable in the XQuery document, the variable value submitted to the
AddExternalVariable does not need any special delimiter, such as quotes. However, the
lexical form must match that of the expected type (for example, a variable of type xs:date
must have a value in the lexical form 2004-01-31; a value in the lexical form 2004/Jan/01
will cause an error). Note that this also means that you cannot use an XQuery 1.0 function (for
example, current-date()) as the value of an external variable (since the lexical form of the
function as it is written will either not match the required data type (if the datatype is specified in
the declaration of the external variable) or will be read as a string (if the datatype is not
specified).) Providing an external variable that has the name of an existing (uncleared) variable
causes an error.

ClearExternalVariableList
No argument should be provided. The ClearExternalVariableList clears the external
variables list created with AddExternalVariable methods.

Note: Setting the optional XML document must always be done before query execution.

Properties
The following properties are defined:

XQueryFileName
A string input that is read as a URL to locate the XQuery file to be executed. If both the
XQueryFileName property and XQueryFromText property are specified, then the property
that has been set later than the other (in the code sequence) is used.

© 2008 Altova GmbH

.NET Interface 69Usage

AltovaXML 2008

InputXMLFileName
A string input that is read as a URL to locate the XML file that will be loaded into the query.
XQuery navigation expressions are evaluated with reference to the document node of this XML
document. If both the InputXMLFileName property and InputXMLFromText property are
specified, then the property that has been set later than the other (in the code sequence) is
used.

XQueryFromText
A string input that constructs an XQuery document. If both the XQueryFileName property and
XQueryFromText property are specified, then the property that has been set later than the
other (in the code sequence) is used.

InputXMLFromText
A string input that constructs an XML document. XQuery navigation expressions are evaluated
with reference to the document node of this XML document. If both the InputXMLFileName
property and InputXMLFromText property are specified, then the property that has been set
later than the other (in the code sequence) is used.

LastErrorMessage
Returns the last error message.

Note: If an XML document is set and is not needed for a new XQuery execution, then it should
be cleared with an empty string assignment.

The following serialization options are defined:

OutputMethod
The required output method can be specified by submitting the required value as a string
argument. Valid values are: xml, xhtml, html, and text. For example:
objAltovaXML.XQuery.OutputMethod = "xml". If the value is invalid, it is ignored. The
default output method is xml.

OutputOmitXMLDeclaration
You can specify whether the XML declaration should be omitted or included in the output by
submitting true or false (case-insensitive) as a Boolean argument. For example:
objAltovaXML.XQuery.OutputOmitXMLDeclaration = "FALSE". If the value is invalid,
an error is raised. The default option is TRUE.

OutputIndent
 You can specify whether the output should be indented or not by submitting true or false
(case-insensitive) as a Boolean argument. For example:
objAltovaXML.XQuery.OutputIndent = "TRUE". If the value is invalid, an error is
raised. The default option is False.

OutputEncoding
 The required output encoding can be specified by submitting the encoding value as a string
argument. For example: objAltovaXML.XQuery.OutputEncoding = "UTF-8". If the
value is invalid, it is ignored. The default output encoding is UTF-8.

Note: For the serialization options, Raw Interface and Dispatch Interface usage differs. In the
Raw Interface, if no argument is provided with these properties, then the current value of the
property is returned. You would use something like: put_OutputOption(VARIANT_BOOL
bVal) or VARIANT_BOOL bVal = get_OutputOption(), respectively, to set values and
get values. In the Dispatch Interface, you can use b = myXQuery.OutputOption to get
values and myXQuery.OutputOption = b to set values. For example, in the Dispatch

70 Usage .NET Interface

© 2008 Altova GmbHAltovaXML 2008

Interface, Sheet1.Cells(10, 2) = objAltovaXML.XQuery.OutputEncoding would
get the current output encoding.

© 2008 Altova GmbH

Explicitly releasing AltovaXML COM-Server from C# and VB.NET 71Usage

AltovaXML 2008

2.5 Explicitly releasing AltovaXML COM-Server from C# and VB.NET

It is possible to explicitly release the AltovaXML COM references from within C# code using the
ReleaseComObject methods shown below.

Example:

 private void button1_Click(object sender, EventArgs e)
 {
 Altova.AltovaXML.ApplicationClass AltovaXML = new Altova.
AltovaXML.ApplicationClass();
 Altova.AltovaXML.IXSLT2 XSLT2 = AltovaXML.XSLT2;

 XSLT2.InputXMLFileName =
"C:\\Projects\\files\\XMLSpyExeFolder\\Examples\\OrgChart.xml";
 XSLT2.XSLFileName =
"C:\\Projects\\files\\XMLSpyExeFolder\\Examples\\OrgChart.xsl";
 XSLT2.Execute(
"C:\\Projects\\files\\XMLSpyExeFolder\\Examples\\OrgChart_out.html");

 // you must release ALL references to all components that
you received.
 System.Runtime.InteropServices.Marshal.ReleaseComObject(
XSLT2);
 XSLT2 = null;
 System.Runtime.InteropServices.Marshal.ReleaseComObject(
AltovaXML);
 AltovaXML = null;
 }

 At the end of the method, the AltovaXML.exe server shuts down!

 If you do not call all of the ReleaseComObject methods, the exe servers will only be
shut down with the shutdown of the C# application.

Chapter 3

Engine Information

74 Engine Information

© 2008 Altova GmbHAltovaXML 2008

3 Engine Information

This section contains information about implementation-specific features of the Altova XML
Validator, Altova XSLT 1.0 Engine, Altova XSLT 2.0 Engine, and Altova XQuery Engine.

© 2008 Altova GmbH

Altova XML Validator 75Engine Information

AltovaXML 2008

3.1 Altova XML Validator

The Altova XML Validator implements and conforms to the rules of:

 XML 1.0 (Fourth Edition)
 XML Namespaces (1.0)
 XML Schemas (Structures)
 XML Schema (Datatypes)

http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

76 Engine Information XSLT 1.0 Engine: Implementation Information

© 2008 Altova GmbHAltovaXML 2008

3.2 XSLT 1.0 Engine: Implementation Information

The Altova XSLT 1.0 Engine is built into Altova's XMLSpy, StyleVision, Authentic, and
MapForce XML products. It is also available in the free AltovaXML package. The Altova XSLT
1.0 Engine implements and conforms to the World Wide Web Consortium's XSLT 1.0
Recommendation of 16 November 1999 and XPath 1.0 Recommendation of 16 November 1999
. Limitations and implementation-specific behavior are listed below.

Limitations

 The xsl:preserve-space and xsl:strip-space elements are not supported.

 When the method attribute of xsl:output is set to HTML, or if HTML output is
selected by default, then special characters in the XML or XSLT file are inserted in the
HTML document directly as special characters; they are not inserted as HTML
character references in the output. For instance, the character (the decimal
character reference for a non-breaking space) is not inserted as in the HTML
code, but directly as a non-breaking space.

Implementation's handling of whitespace-only nodes in source XML document
The XML data (and, consequently, the XML Infoset) that is passed to the Altova XSLT 1.0
Engine is stripped of boundary-whitespace-only text nodes. (A boundary-whitespace-only text
node is a child whitespace-only text node that occurs between two elements within an element
of mixed content.) This stripping may have an effect on the value returned by the
fn:position(), fn:last(), and fn:count() functions.

For any node selection that selects text nodes also, boundary-whitespace-only text nodes would
typically also be included in the selection. However, since the XML Infoset used by the Altova
engines has boundary-whitespace-only text nodes stripped from it, these nodes are not present
in the XML Infoset. As a result, the size of the selection and the numbering of nodes in the
selection will be different than that for a selection which included these text nodes. The
fn:position(), fn:last(), and fn:count() functions, therefore, could produce results
that are different from those produced by some other processors.

A situation in which boundary-whitespace-only text nodes are evaluated as siblings of other
elements arises most commonly when xsl:apply-templates is used to apply templates.
When the fn:position(), fn:last(), and fn:count() functions are used in patterns with
a name test (for example, para[3], which is short for para[position()=3]),
boundary-whitespace-only nodes are irrelevant since only the named elements (para in the
above example) are selected. (Note, however, that boundary-whitespace-only nodes are
relevant in patterns that use the wildcard, for example, *[10].)

Note: If a boundary-whitespace-only text node is required in the output, then insert the required
whitespace within one of the two adjoining child elements. For example, the XML fragment:

<para>This is bold <i>italic</>.</para>

when processed with the XSLT template

<xsl:template match="para">
<xsl:apply-templates/>

</xsl:template>

will produce:

This is bolditalic.

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath

© 2008 Altova GmbH

XSLT 1.0 Engine: Implementation Information 77Engine Information

AltovaXML 2008

To get a space between bold and italic in the output, insert a space character within either
the or <i> elements in the XML source. For example:

<para>This is bold <i> italic</>.</para> or
<para>This is bold <i>italic</>.</para> or
<para>This is bold<i> italic</>.</para>

When such an XML fragment is processed with the same XSLT template given above, it will
produce:

This is bold italic.

78 Engine Information XSLT 2.0 Engine: Implementation Information

© 2008 Altova GmbHAltovaXML 2008

3.3 XSLT 2.0 Engine: Implementation Information

The Altova XSLT 2.0 Engine is built into Altova's XMLSpy, StyleVision, Authentic, and
MapForce XML products. It is also available in the free AltovaXML package. This section
describes the engine's implementation-specific aspects of behavior. It starts with a section
giving general information about the engine, and then goes on to list the implementation-specific
behavior of XSLT 2.0 functions.

For information about implementation-specific behavior of XPath 2.0 functions, see the section,
XPath 2.0 and XQuery 1.0 Functions.

© 2008 Altova GmbH

XSLT 2.0 Engine: Implementation Information 79Engine Information

AltovaXML 2008

3.3.1 General Information

The Altova XSLT 2.0 Engine conforms to the World Wide Web Consortium's (W3C's) XSLT
2.0 Recommendation of 23 January 2007. Note the following general information about the
engine.

Backwards Compatibility
The Altova XSLT 2.0 Engine is backwards compatible. The only time the backwards
compatibility of the XSLT 2.0 Engine comes into play is when using the XSLT 2.0 Engine of
Altova XML to process an XSLT 1.0 stylesheet. Note that there could be differences in the
outputs produced by the XSLT 1.0 Engine and the backwards-compatible XSLT 2.0 Engine.

In all other Altova products, the backwards-compatibility issue never arises. This is because
these products automatically select the appropriate engine for the transformation. For example,
consider that in XMLSpy you specify that a certain XML document be processed with an XSLT
1.0 stylesheet. When the transformation command is invoked, XMLSpy automatically selects
the XSLT 1.0 Engine of XMLSpy to carry out the transformation.

Note: The stylesheet version is specified in the version attribute of the stylesheet or
transform element of the stylesheet.

Namespaces
Your XSLT 2.0 stylesheet should declare the following namespaces in order for you to be able
to use the type constructors and functions available in XSLT 2.0. The prefixes given below are
conventionally used; you could use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath 2.0 functions fn: http://www.w3.org/2005/xpath-functions

Typically, these namespaces will be declared on the xsl:stylesheet or xsl:transform
element, as shown in the following listing:

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
...

</xsl:stylesheet>

The following points should be noted:

 The Altova XSLT 2.0 Engine uses the XPath 2.0 and XQuery 1.0 Functions namespace
(listed in the table above) as its default functions namespace. So you can use XPath
2.0 and XSLT 2.0 functions in your stylesheet without any prefix. If you declare the
XPath 2.0 Functions namespace in your stylesheet with a prefix, then you can
additionally use the prefix assigned in the declaration.

 When using type constructors and types from the XML Schema namespace, the prefix
used in the namespace declaration must be used when calling the type constructor (for
example, xs:date).

 With the CRs of 23 January 2007, the untypedAtomic and duration datatypes (
dayTimeDuration and yearMonthDuration), which were formerly in the XPath
Datatypes namespace (typically prefixed xdt:) have been moved to the XML Schema
namespace.

http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/

80 Engine Information XSLT 2.0 Engine: Implementation Information

© 2008 Altova GmbHAltovaXML 2008

 Some XPath 2.0 functions have the same name as XML Schema datatypes. For
example, for the XPath functions fn:string and fn:boolean there exist XML
Schema datatypes with the same local names: xs:string and xs:boolean. So if
you were to use the XPath expression string('Hello'), the expression evaluates
as fn:string('Hello')—not as xs:string('Hello').

Schema-awareness
The Altova XSLT 2.0 Engine is schema-aware.

Whitespace in XML document
By default, the Altova XSLT 2.0 Engine strips all boundary whitespace from
boundary-whitespace-only nodes in the source XML document. The removal of this whitespace
affects the values that the fn:position(), fn:last(), fn:count(), and
fn:deep-equal() functions return. For more details, see Whitespace-only Nodes in XML
Document in the XPath 2.0 and XQuery 1.0 Functions section.

Note: If a boundary-whitespace-only text node is required in the output, then insert the required
whitespace within one of the two adjoining child elements. For example, the XML fragment:

<para>This is bold <i>italic</>.</para>

when processed with the XSLT template

<xsl:template match="para">
<xsl:apply-templates/>

</xsl:template>

will produce:

This is bolditalic.

To get a space between bold and italic in the output, insert a space character within either
the or <i> elements in the XML source. For example:

<para>This is bold <i> italic</>.</para> or
<para>This is bold <i>italic</>.</para> or
<para>This is bold<i> italic</>.</para>

When such an XML fragment is processed with the same XSLT template given above, it will
produce:

This is bold italic.

XSLT 2.0 elements and functions
Limitations and implementation-specific behavior of XSLT 2.0 elements and functions are listed
in the section XSLT 2.0 Elements and Functions.

XPath 2.0 functions
Implementation-specific behavior of XPath 2.0 functions is listed in the section XPath 2.0 and
XQuery 1.0 Functions.

© 2008 Altova GmbH

XSLT 2.0 Engine: Implementation Information 81Engine Information

AltovaXML 2008

3.3.2 XSLT 2.0 Elements and Functions

Limitations
The xsl:preserve-space and xsl:strip-space elements are not supported.

Implementation-specific behavior
Given below is a description of how the Altova XSLT 2.0 Engine handles
implementation-specific aspects of the behavior of certain XSLT 2.0 functions.

function-available
The function tests for the availability of XSLT 2.0 functions, not for the availability of XPath 2.0
functions.

unparsed-text
The href attribute accepts (i) relative paths for files in the base-uri folder, and (ii) absolute
paths with or without the file:// protocol.

82 Engine Information XQuery 1.0 Engine: Implementation Information

© 2008 Altova GmbHAltovaXML 2008

3.4 XQuery 1.0 Engine: Implementation Information

The Altova XQuery 1.0 Engine is built into Altova's XMLSpy and MapForce XML products. It is
also available in the free AltovaXML package. This section provides information about
implementation-defined aspects of behavior.

Standards conformance
The Altova XQuery 1.0 Engine conforms to the World Wide Web Consortium's (W3C's) XQuery
1.0 Recommendation of 23 January 2007. The XQuery standard gives implementations
discretion about how to implement many features. Given below is a list explaining how the
Altova XQuery 1.0 Engine implements these features.

Schema awareness
The Altova XQuery 1.0 Engine is schema-aware.

Encoding
The UTF-8 and UTF-16 character encodings are supported.

Namespaces
The following namespace URIs and their associated bindings are pre-defined.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

Schema instance xsi: http://www.w3.org/2001/XMLSchema-instance

Built-in functions fn: http://www.w3.org/2005/xpath-functions

Local functions local: http://www.w3.org/2005/xquery-local-functions

The following points should be noted:

 The Altova XQuery 1.0 Engine recognizes the prefixes listed above as being bound to
the corresponding namespaces.

 Since the built-in functions namespace listed above is the default functions namespace
in XQuery, the fn: prefix does not need to be used when built-in functions are invoked
(for example, string("Hello") will call the fn:string function). However, the
prefix fn: can be used to call a built-in function without having to declare the
namespace in the query prolog (for example: fn:string("Hello")).

 You can change the default functions namespace by declaring the default
function namespace expression in the query prolog.

 When using types from the XML Schema namespace, the prefix xs: may be used
without having to explicitly declare the namespaces and bind these prefixes to them in
the query prolog. (Example: xs:date and xs:yearMonthDuration.) If you wish to
use some other prefix for the XML Schema namespace, this must be explicitly declared
in the query prolog. (Example: declare namespace alt =
"http://www.w3.org/2001/XMLSchema"; alt:date("2004-10-04").)

 Note that the untypedAtomic, dayTimeDuration, and yearMonthDuration datatypes
have been moved, with the CRs of 23 January 2007, from the XPath Datatypes
namespace to the XML Schema namespace, so: xs:yearMonthDuration.

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is

http://www.w3.org/TR/2007/REC-xquery-20070123/
http://www.w3.org/TR/2007/REC-xquery-20070123/

© 2008 Altova GmbH

XQuery 1.0 Engine: Implementation Information 83Engine Information

AltovaXML 2008

reported. Note, however, that some functions have the same name as schema datatypes, e.g.
fn:string and fn:boolean. (Both xs:string and xs:boolean are defined.) The
namespace prefix determines whether the function or type constructor is used.

XML source document and validation
XML documents used in executing an XQuery document with the Altova XQuery 1.0 Engine
must be well-formed. However, they do not need to be valid according to an XML Schema. If
the file is not valid, the invalid file is loaded without schema information. If the XML file is
associated with an external schema and is valid according to it, then post-schema validation
information is generated for the XML data and will be used for query evaluation.

Static and dynamic type checking
The static analysis phase checks aspects of the query such as syntax, whether external
references (e.g. for modules) exist, whether invoked functions and variables are defined, and so
on. No type checking is done in the static analysis phase. If an error is detected in the static
analysis phase, it is reported and the execution is stopped.

Dynamic type checking is carried out at run-time, when the query is actually executed. If a type
is incompatible with the requirement of an operation, an error is reported. For example, the
expression xs:string("1") + 1 returns an error because the addition operation cannot be
carried out on an operand of type xs:string.

Library Modules
Library modules store functions and variables so they can be reused. The Altova XQuery 1.0
Engine supports modules that are stored in a single external XQuery file. Such a module file
must contain a module declaration in its prolog, which associates a target namespace. Here is
an example module:

module namespace libns="urn:module-library";
declare variable $libns:company := "Altova";
declare function libns: webaddress() { "http://www.altova.com" };

All functions and variables declared in the module belong to the namespace associated with the
module. The module is used by importing it into an XQuery file with the import module
statement in the query prolog. The import module statement only imports functions and
variables declared directly in the library module file. As follows:

import module namespace modlib = "urn:module-library" at
"modulefilename.xq";

if ($modlib:company = "Altova")
then modlib:webaddress()
else error("No match found.")

External functions
External functions are not supported, i.e. in those expressions using the external keyword, as
in:

declare function hoo($param as xs:integer) as xs:string external;

Collations
The default collation is the Unicode codepoint collation. No other collation is currently
supported. Comparisons, including the fn:max function, are based on this collation.

84 Engine Information XQuery 1.0 Engine: Implementation Information

© 2008 Altova GmbHAltovaXML 2008

Character normalization
No character normalization form is supported.

Precision of numeric types

 The xs:integer datatype is arbitrary-precision, i.e. it can represent any number of
digits.

 The xs:decimal datatype has a limit of 20 digits after the decimal point.

 The xs:float and xs:double datatypes have limited-precision of 15 digits.

XQuery Instructions Support
The Pragma instruction is not supported. If encountered, it is ignored and the fallback
expression is evaluated.

XQuery Functions Support
For information about implementation-specific behavior of XQuery 1.0 functions, see the
section, XPath 2.0 and XQuery 1.0 Functions.

© 2008 Altova GmbH

XPath 2.0 and XQuery 1.0 Functions 85Engine Information

AltovaXML 2008

3.5 XPath 2.0 and XQuery 1.0 Functions

XPath 2.0 and XQuery 1.0 functions are evaluated by:

 the Altova XPath 2.0 Engine, which (i) is a component of the Altova XSLT 2.0 Engine,
and (ii) is used in the XPath Evaluator of Altova's XMLSpy product to evaluate XPath
expressions with respect to the XML document that is active in the XMLSpy interface.

 the Altova XQuery 1.0 Engine.

This section describes how XPath 2.0 and XQuery 1.0 functions are handled by the Altova
XPath 2.0 Engine and Altova XQuery 1.0 Engine. Only those functions are listed, for which the
behavior is implementation-specific, or where the behavior of an individual function is different in
any of the three environments in which these functions are used (that is, in XSLT 2.0, in XQuery
1.0, and in the XPath Evaluator of XMLSpy). Note that this section does not describe how to use
these functions. For more information about the usage of functions, see the World Wide Web
Consortium's (W3C's) XQuery 1.0 and XPath 2.0 Functions and Operators Recommendation
of 23 January 2007.

http://www.w3.org/TR/2007/REC-xpath-functions-20070123/

86 Engine Information XPath 2.0 and XQuery 1.0 Functions

© 2008 Altova GmbHAltovaXML 2008

3.5.1 General Information

Standards conformance

 The Altova XPath 2.0 Engine implements the World Wide Web Consortium's (W3C's)
XPath 2.0 Recommendation of 23 January 2007. The Altova XQuery 1.0 Engine
implements the World Wide Web Consortium's (W3C's) XQuery 1.0 Recommendation
of 23 January 2007. The XPath 2.0 and XQuery 1.0 functions support in these two
engines is compliant with the XQuery 1.0 and XPath 2.0 Functions and Operators
Recommendation of 23 January 2007.

 The Altova XPath 2.0 Engine conforms to the rules of XML 1.0 (Fourth Edition) and
XML Namespaces (1.0).

Default functions namespace
The default functions namespace has been set to comply with that specified in the standard.
Functions can therefore be called without a prefix.

Boundary-whitespace-only nodes in source XML document
The XML data (and, consequently, the XML Infoset) that is passed to the Altova XPath 2.0
Engine and Altova XQuery 1.0 Engine is stripped of boundary-whitespace-only text nodes. (A
boundary-whitespace-only text node is a child whitespace-only text node that occurs between
two elements within an element of mixed content.) This stripping has an effect on the value
returned by the fn:position(), fn:last(), fn:count(), and fn:deep-equal()
functions.

For any node selection that selects text nodes also, boundary-whitespace-only text nodes would
typically also be included in the selection. However, since the XML Infoset used by the Altova
engines has boundary-whitespace-only text nodes stripped from it, these nodes are not present
in the XML Infoset. As a result, the size of the selection and the numbering of nodes in the
selection will be different than that for a selection which included these text nodes. The
fn:position(), fn:last(), fn:count(), and fn:deep-equal() functions, therefore,
could produce results that are different from those produced by some other processors.

A situation in which boundary-whitespace-only text nodes are evaluated as siblings of other
elements arises most commonly when xsl:apply-templates is used to apply templates.
When the fn:position(), fn:last(), and fn:count() functions are used in patterns with
a name test (for example, para[3], which is short for para[position()=3]),
boundary-whitespace-only nodes are irrelevant since only the named elements (para in the
above example) are selected. (Note, however, that boundary-whitespace-only nodes are
relevant in patterns that use the wildcard, for example, *[10].)

Numeric notation
On output, when an xs:double is converted to a string, scientific notation (for example,
1.0E12) is used when the absolute value is less than 0.000001 or greater than 1,000,000.
Otherwise decimal or integer notation is used.

Precision of xs:decimal
The precision refers to the number of digits in the number, and a minimum of 18 digits is
required by the specification. For division operations that produce a result of type xs:decimal,
the precision is 19 digits after the decimal point with no rounding.

Implicit timezone

http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.w3.org/TR/2007/REC-xquery-20070123/
http://www.w3.org/TR/2007/REC-xpath-functions-20070123/
http://www.w3.org/TR/2007/REC-xpath-functions-20070123/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/REC-xml-names/

© 2008 Altova GmbH

XPath 2.0 and XQuery 1.0 Functions 87Engine Information

AltovaXML 2008

When two date, time, or dateTime values need to be compared, the timezone of the values
being compared need to be known. When the timezone is not explicitly given in such a value,
the implicit timezone is used. The implicit timezone is taken from the system clock, and its value
can be checked with the fn:implicit-timezone() function.

Collations
Only the Unicode codepoint collation is supported. No other collations can be used. String
comparisons, including for the fn:max and fn:min functions, are based on this collation.

Namespace axis
The namespace axis is deprecated in XPath 2.0. Use of the namespace axis is, however,
supported. To access namespace information with XPath 2.0 mechanisms, use the
fn:in-scope-prefixes(), fn:namespace-uri() and
fn:namespace-uri-for-prefix() functions.

Static typing extensions
The optional static type checking feature is not supported.

88 Engine Information XPath 2.0 and XQuery 1.0 Functions

© 2008 Altova GmbHAltovaXML 2008

3.5.2 Functions Support

The table below lists (in alphabetical order) the implementation-specific behavior of certain
functions. The following general points should be noted:

 In general, when a function expects a sequence of one item as an argument, and a
sequence of more than one item is submitted, then an error is returned.

 All string comparisons are done using the Unicode codepoint collation.
 Results that are QNames are serialized in the form [prefix:]localname.

Function Name Notes

base-uri If external entities are used in the source XML document and if
a node in the external entity is specified as the input node
argument of the base-uri() function, it is still the base URI of
the including XML document that is used—not the base URI of
the external entity.

 The base URI of a node in the XML document can be modified
using the xml:base attribute.

collection The argument is a relative URI that is resolved against the
current base URI.

 If the resolved URI identifies an XML file, then this XML file is
treated as a catalog which references a collection of files. This
file must have the form:
 <collection>
 <doc href="uri-1" />
 <doc href="uri-2" />
 <doc href="uri-3" />
 </collection>
The files referenced by the href attributes are loaded, and their
document nodes are returned as a sequence.

 If the resolved URI does not identify an XML file with the catalog
structure described above, then the argument string is used as
a file-search expression (in which wildcards such as ? and *)
are allowed. The specified directory, as identified by the base
URI and search string, is searched. XML files with names that
match the search expression are loaded, and their document
nodes are returned as a sequence.

 The default collection is empty.

count See note on whitespace in the General Information section.

Function Name Notes

© 2008 Altova GmbH

XPath 2.0 and XQuery 1.0 Functions 89Engine Information

AltovaXML 2008

current-date,
current-dateTi
me,
current-time

 The current date and time is taken from the system clock.
 The timezone is taken from the implicit timezone provided by

the evaluation context; the implicit timezone is taken from the
system clock.

 The timezone is always specified in the result.

deep-equal See note on whitespace in the General Information section.

doc An error is raised only if no XML file is available at the specified
location or if the file is not well-formed. The file is validated if a
schema is available. If the file is not valid, the invalid file is
loaded without schema information.

id In a well-formed but invalid document that contains two or more
elements having the same ID value, the first element in
document order is returned.

in-scope-prefi
xes

 Only default namespaces may be undeclared in the XML
document. However, even when a default namespace is
undeclared on an element node, the prefix for the default
namespace, which is the zero-length string, is returned for that
node.

last See note on whitespace in the General Information section.

lower-case The Unicode character set is supported.

normalize-unic
ode

 The normalization forms NFC, NFD, NFKC, and NFKD are
supported.

position See note on whitespace in the General Information section.

Function Name Notes

resolve-uri If the second, optional argument is omitted, the URI to be
resolved (the first argument) is resolved against the base URI
from the static context, which is the URI of the XSLT stylesheet
or the base URI given in the prolog of the XQuery document.

 The relative URI (the first argument) is appended after the last
"/" in the path notation of the base URI notation.

 If the value of the first argument is the zero-length string, the
base URI from the static context is returned, and this URI
includes the file name of the document from which the base URI
of the static context is derived (e.g. the XSLT or XML file).

90 Engine Information XPath 2.0 and XQuery 1.0 Functions

© 2008 Altova GmbHAltovaXML 2008

static-base-ur
i

 The base URI from the static context is the base URI of the
XSLT stylesheet or the base URI specified in the prolog of the
XQuery document.

 When using XPath Evaluator in the XMLSpy IDE, the base URI
from the static context is the URI of the active XML document.

upper-case The Unicode character set only is supported.

© 2008 Altova GmbH

Extensions 91Engine Information

AltovaXML 2008

3.6 Extensions

There are several ready-made functions in programming languages such as Java and C# that
are not available as XPath 2.0 / XQuery 1.0 functions or as XSLT 2.0 functions. A good
example of such functions are the math functions available in Java, such as sin() and cos().
If these functions were available to the designers of XSLT stylesheets and XQuery queries, it
would increase the application area of stylesheets and queries and greatly simplify the tasks of
stylesheet creators.

Altova Engines (XSLT 1.0, XSLT 2.0, and XQuery 1.0), which are used in a number of Altova
products, support the use of extension functions in Java and .NET. The Altova XSLT Engines
additionally support MSXSL scripts for XSLT 1.0 and 2.0.

This section describes how to use extension functions and MSXSL scripts in your XSLT
stylesheets and XQuery queries. These descriptions are organized into the following sections:

 Java Extension Functions
 .NET Extension Functions
 MSXSL Scripts for XSLT

The two main issues considered in the descriptions are: (i) how functions in the respective
libraries are called; and (ii) what rules are followed for converting arguments in a function call to
the required input format of the function, and what rules are followed for the return conversion
(function result to XSLT/XQuery data object).

Requirements
For extension functions support, a Java Runtime Environment (for access to Java functions)
and .NET Framework 2.0 (minimum, for access to .NET functions) must be installed on the
machine running the XSLT transformation or XQuery execution, or must be accessible for the
transformations.

92 Engine Information Extensions

© 2008 Altova GmbHAltovaXML 2008

3.6.1 Java Extension Functions

A Java extension function can be used within an XPath or XQuery expression to invoke a Java
constructor or call a Java method (static or instance).

A field in a Java class is considered to be a method without any argument. A field can be static
or instance. How to access fields is described in the respective sub-sections, static and
instance.

This section is organized into the following sub-sections:

 Java: Constructors
 Java: Static Methods and Static Fields
 Java: Instance Methods and Instance Fields
 Datatypes: XSLT/XQuery to Java
 Datatypes: Java to XSLT/XQuery

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

 The prefix: part identifies the extension function as a Java function. It does so by
associating the extension function with an in-scope namespace declaration, the URI of
which must begin with java: (see below for examples). The namespace declaration
should identify a Java class, for example: xmlns:myns="java:java.lang.Math".
However, it could also simply be: xmlns:myns="java" (without a colon), with the
identification of the Java class being left to the fname() part of the extension function.

 The fname() part identifies the Java method being called, and supplies the arguments
for the method (see below for examples). However, if the namespace URI identified by
the prefix: part does not identify a Java class (see preceding point), then the Java
class should be identified in the fname() part, before the class and separated from the
class by a period (see the second XSLT example below).

Note: The class being called must be on the classpath of the machine.

XSLT example
Here are two examples of how a static method can be called. In the first example, the class
name (java.lang.Math) is included in the namespace URI and, therefore, must not be in the
fname() part. In the second example, the prefix: part supplies the prefix java: while the
fname() part identifies the class as well as the method.

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jmath="java"
select="jmath:java.lang.Math.cos(3.14)" />

The method named in the extension function (cos() in the example above) must match the
name of a public static method in the named Java class (java.lang.Math in the example
above).

XQuery example
Here is an XQuery example similar to the XSLT example above:

<cosine xmlns:jMath="java:java.lang.Math">
 {jMath:cos(3.14)}
</cosine>

© 2008 Altova GmbH

Extensions 93Engine Information

AltovaXML 2008

User-defined Java class files
If you have created your own Java classes, methods in these classes are called differently
according to: (i) whether the classes are accessed via a JAR file or a class file, and (ii) whether
these files (JAR or class) are located in the current directory (the same directory as the XSLT or
XQuery document) or not. Since the built-in Java classes and Java classes in the current
directory are found when a Java function is executed, there is no need to specify the location of
class files in the current directory. However, paths to class files not in the current directory and
to all JAR files must be specified.

Class files
If access is via a class file, then there are two possibilities:

 The class file is in the same folder as the XSLT or XQuery document. In this case,
since all classes in the folder are found, the file location does not need to be specified.
The syntax to identify a class is:

java:classname

where

java: indicates that a user-defined Java function is being called; (Java classes in the
current directory will be loaded by default)
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a
method call.

The example below calls the getVehicleType()method of the Car class of the
com.altova.extfunc package:

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
xmlns:car="java:com.altova.extfunc.Car" >

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

</xsl:stylesheet>

 The class file is not in the same folder as the XSLT or XQuery document. In this case,
the location of the class file must be specified within the URI as a query string. The
syntax is:

java:classname[?path=uri-of-classfile]

where

java: indicates that a user-defined Java function is being called
uri-of-classfile is the URI of the the class file

94 Engine Information Extensions

© 2008 Altova GmbHAltovaXML 2008

classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a
method call.

The example below shows how to access a class file that is located in another directory
than the current directory.

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
xmlns:car="

java:Car?path=file:C:/test/classExample/com.altova.extfunc" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>
</xsl:template>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the
ClasssLoader.

JAR files
If access is via a JAR file, the URI of the JAR file must be specified using the following syntax:

xmlns:classNS="java:classname?path=jar:uri-of-jarfile!/"

The method is then called by using the prefix of the namespace URI that identifies the
class: classNS:method()

In the above:

java: indicates that a Java function is being called
classname is the name of the user-defined class
? is the separator between the classname and the path
path=jar: indicates that a path to a JAR file is being given
uri-of-jarfile is the URI of the jar file
!/ is the end delimiter of the path
classNS:method() is the call to the method

Alternatively, the classname can be given with the method call. Here are two examples of the
syntax:

xmlns:ns1="java:docx.layout.pages?path=jar:file://c:/projects/docs/docx.jar!/"
ns1:main()

xmlns:ns2="java?path=jar:file://c:/projects/docs/docx.jar!/"
ns2:docx.layout.pages.main()

Here is a complete XSLT example that uses a JAR file to call a Java extension function:

© 2008 Altova GmbH

Extensions 95Engine Information

AltovaXML 2008

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
xmlns:car="java?path=jar:file://C:/test/Car1.jar!/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:Car1.new('red')" />
 <a><xsl:value-of select="car:Car1.getCarColor($myCar)"/>

</xsl:template>

<xsl:template match="car"/>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the
ClasssLoader.

Java: Constructors

An extension function can be used to call a Java constructor. All constructors are called with the
pseudo-function new().

If the result of a Java constructor call can be implicitly converted to XPath/XQuery datatypes,
then the Java extension function will return a sequence that is an XPath/XQuery datatype. If the
result of a Java constructor call cannot be converted to a suitable XPath/XQuery datatype, then
the constructor creates a wrapped Java object with a type that is the name of the class returning
that Java object. For example, if a constructor for the class java.util.Date is called (
java.util.Date.new()), then an object having a type java.util.Date is returned. The lexical
format of the returned object may not match the lexical format of an XPath datatype and the
value would therefore need to be converted to the lexical format of the required XPath datatype
and then to the required XPath datatype.

There are two things that can be done with a Java object created by a constructor:

 It can be assigned to a variable:
<xsl:variable name="currentdate" select="date:new()" xmlns:date="
java:java.util.Date" />

 It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:toString(date:new())" xmlns:date="

java:java.util.Date" />

Java: Static Methods and Static Fields

A static method is called directly by its Java name and by supplying the arguments for the
method. Static fields (methods that take no arguments), such as the constant-value fields E
and PI, are accessed without specifying any argument.

XSLT examples
Here are some examples of how static methods and fields can be called:

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(jMath:PI())" />

96 Engine Information Extensions

© 2008 Altova GmbHAltovaXML 2008

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:E() * jMath:cos(3.14)" />

Notice that the extension functions above have the form prefix:fname(). The prefix in all
three cases is jMath:, which is associated with the namespace URI java:java.lang.Math.
(The namespace URI must begin with java:. In the examples above it is extended to contain
the class name (java.lang.Math).) The fname() part of the extension functions must match
the name of a public class (e.g. java.lang.Math) followed by the name of a public static
method with its argument/s (such as cos(3.14)) or a public static field (such as PI()).

In the examples above, the class name has been included in the namespace URI. If it were not
contained in the namespace URI, then it would have to be included in the fname() part of the
extension function. For example:

<xsl:value-of xmlns:java="java:"
select="java:java.lang.Math.cos(3.14)" />

XQuery example
A similar example in XQuery would be:

<cosine xmlns:jMath="java:java.lang.Math">
 {jMath:cos(3.14)}
</cosine>

Java: Instance Methods and Instance Fields

An instance method has a Java object passed to it as the first argument of the method call.
Such a Java object typically would be created by using an extension function (for example a
constructor call) or a stylesheet parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="1.0" exclude-result-prefixes="date"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:date="java:java.util.Date"
 xmlns:jlang="java:java.lang">
 <xsl:param name="CurrentDate" select="date:new()"/>
 <xsl:template match="/">
 <enrollment institution-id="Altova School"
 date="{date:toString($CurrentDate)}"
 type="{jlang:Object.toString(jlang:Object.getClass(date:new()
))}">
 </enrollment>
 </xsl:template>
</xsl:stylesheet>

In the example above, the value of the node enrollment/@type is created as follows:

1. An object is created with a constructor for the class java.util.Date (with the
date:new() constructor).

2. This Java object is passed as the argument of the jlang.Object.getClass method.
3. The object obtained by the getClass method is passed as the argument to the

jlang.Object.toString method.

The result (the value of @type) will be a string having the value: java.util.Date.

An instance field is theoretically different from an instance method in that it is not a Java object
per se that is passed as an argument to the instance field. Instead, a parameter or variable is
passed as the argument. However, the parameter/variable may itself contain the value returned
by a Java object. For example, the parameter CurrentDate takes the value returned by a
constructor for the class java.util.Date. This value is then passed as an argument to the

© 2008 Altova GmbH

Extensions 97Engine Information

AltovaXML 2008

instance method date:toString in order to supply the value of /enrollment/@date.

Datatypes: XPath/XQuery to Java

When a Java function is called from within an XPath/XQuery expression, the datatype of the
function's arguments is important in determining which of multiple Java classes having the
same name is called.

In Java, the following rules are followed:

 If there is more than one Java method with the same name, but each has a different
number of arguments than the other/s, then the Java method that best matches the
number of arguments in the function call is selected.

 The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly
converted to a corresponding Java datatype. If the supplied XPath/XQuery type can be
converted to more than one Java type (for example, xs:integer), then that Java type
is selected which is declared for the selected method. For example, if the Java method
being called is fx(decimal) and the supplied XPath/XQuery datatype is xs:integer,
then xs:integer will be converted to Java's decimal datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean
types to Java datatypes.

xs:string java.lang.String

xs:boolean boolean (primitive), java.lang.Boolean

xs:integer int, long, short, byte, float, double, and the
wrapper classes of these, such as java.lang.
Integer

xs:float float (primitive), java.lang.Float, double
(primitive)

xs:double double (primitive), java.lang.Double

xs:decimal float (primitive), java.lang.Float, double
(primitive), java.lang.Double

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and
XQuery) will also be converted to the Java type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct Java method based on the supplied
information. For example, consider the following case.

 The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the
method mymethod(float).

 However, there is another method in the class which takes an argument of another
datatype: mymethod(double).

 Since the method names are the same and the supplied type (xs:untypedAtomic)
could be converted correctly to either float or double, it is possible that xs:
untypedAtomic is converted to double instead of float.

 Consequently the method selected will not be the required method and might not
produce the expected result. To work around this, you can create a user-defined
method with a different name and use this method.

Types that are not covered in the list above (for example xs:date) will not be converted and will

98 Engine Information Extensions

© 2008 Altova GmbHAltovaXML 2008

generate an error. However, note that in some cases, it might be possible to create the required
Java type by using a Java constructor.

Datatypes: Java to XPath/XQuery

When a Java method returns a value, the datatype of the value is a string, numeric or boolean
type, then it is converted to the corresponding XPath/XQuery type. For example, Java's java.
lang.Boolean and boolean datatypes are converted to xsd:boolean.

One-dimensional arrays returned by functions are expanded to a sequence. Multi-dimensional
arrays will not be converted, and should therefore be wrapped.

When a wrapped Java object or a datatype other than string, numeric or boolean is returned,
you can ensure conversion to the required XPath/XQuery type by first using a Java method (e.g
toString) to convert the Java object to a string. In XPath/XQuery, the string can be modified to
fit the lexical representation of the required type and then converted to the required type (for
example, by using the cast as expression).

© 2008 Altova GmbH

Extensions 99Engine Information

AltovaXML 2008

3.6.2 .NET Extension Functions

If you are working on the .NET platform, you can use extension functions written in any of the
.NET languages (for example, C#). A .NET extension function can be used within an XPath or
XQuery expression to invoke a constructor, property, or method (static or instance) within a
.NET class.

A property of a .NET class is called using the syntax get_PropertyName().

This section is organized into the following sub-sections:

 .NET: Constructors
 .NET: Static Methods and Static Fields
 .NET: Instance Methods and Instance Fields
 Datatypes: XSLT/XQuery to .NET
 Datatypes: .NET to XSLT/XQuery

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

 The prefix: part is associated with a URI that identifies the .NET class being
addressed.

 The fname() part identifies the constructor, property, or method (static or instance)
within the .NET class, and supplies any argument/s, if required.

 The URI must begin with clitype: (which identifies the function as being a .NET
extension function).

 The prefix:fname() form of the extension function can be used with system classes
and with classes in a loaded assembly. However, if a class needs to be loaded,
additional parameters containing the required information will have to be supplied.

Parameters
The following parameters can be used to provide information for loading an assembly:

asm The assembly name

ver The version number: a maximum of four integers separated by
periods

from A URI that gives the location of the assembly (DLL) to be loaded. If
the URI is relative, it is relative to the XSLT or XQuery document. If
this parameter is present, any other parameter is ignored.

partialname The partial name of the assembly. It is supplied to
Assembly.LoadWith.PartialName(), which will attempt to load the
assembly. If partialname is present, any other parameter is
ignored.

A question mark must be inserted before the first parameter, and parameters must be
separated by a semi-colon. The parameter name gives its value with an equals sign (see
example below).

Examples of namespace declarations
An example of a namespace declaration that identifies the system class System.Environment:

xmlns:myns="clitype:System.Environment"

100 Engine Information Extensions

© 2008 Altova GmbHAltovaXML 2008

An example of a namespace declaration that identifies the class to be loaded as
Trade.Forward.Scrip:

xmlns:myns="clitype:Trade.Forward.Scrip?asm=forward;version=10.6.2.1"

XSLT example
Here is a complete XSLT example that calls functions in system class System.Math:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes" />
 <xsl:template match="/">
 <math xmlns:math="clitype:System.Math">
 <sqrt><xsl:value-of select="math:Sqrt(9)"/></sqrt>
 <pi><xsl:value-of select="math:PI()"/></pi>
 <e><xsl:value-of select="math:E()"/></e>
 <pow><xsl:value-of select="math:Pow(math:PI(), math:E())"/></pow>
 </math>
 </xsl:template>
</xsl:stylesheet>

The namespace declaration on the element math associates the prefix math: with the URI
clitype:System.Math. The clitype: beginning of the URI indicates that what follows
identifies either a system class or a loaded class. The math: prefix in the XPath expressions
associates the extension functions with the URI (and, by extension, the class) System.Math.
The extension functions identify methods in the class System.Math and supply arguments
where required.

XQuery example
Here is an XQuery example fragment similar to the XSLT example above:

<math xmlns:math="clitype:System.Math">
 {math:Sqrt(9)}
</math>

As with the XSLT example above, the namespace declaration identifies the .NET class, in this
case a system class. The XQuery expression identifies the method to be called and supplies
the argument.

.NET: Constructors

An extension function can be used to call a .NET constructor. All constructors are called with
the pseudo-function new(). If there is more than one constructor for a class, then the
constructor that most closely matches the number of arguments supplied is selected. If no
constructor is deemed to match the supplied argument/s, then a 'No constructor found'
error is returned.

Constructors that return XPath/XQuery datatypes
If the result of a .NET constructor call can be implicitly converted to XPath/XQuery datatypes,
then the .NET extension function will return a sequence that is an XPath/XQuery datatype.

Constructors that return .NET objects
If the result of a .NET constructor call cannot be converted to a suitable XPath/XQuery
datatype, then the constructor creates a wrapped .NET object with a type that is the name of the

© 2008 Altova GmbH

Extensions 101Engine Information

AltovaXML 2008

class returning that object. For example, if a constructor for the class System.DateTime is
called (withSystem.DateTime.new()), then an object having a type System.DateTime is
returned.

The lexical format of the returned object may not match the lexical format of a required XPath
datatype. In such cases, the returned value would need to be: (i) converted to the lexical format
of the required XPath datatype; and (ii) cast to the required XPath datatype.

There are three things that can be done with a .NET object created by a constructor:

 It can be used within a variable:
<xsl:variable name="currentdate" select="date:new(2008, 4, 29)"
xmlns:date="clitype:System.DateTime" />

 It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:ToString(date:new(2008, 4, 29))" xmlns:date

="clitype:System.DateTime" />
 It can be converted to a string, number, or boolean:
 <xsl:value-of select="xs:integer(data:get_Month(date:new(2008, 4, 29)))

" xmlns:date="clitype:System.DateTime" />

.NET: Static Methods and Static Fields

A static method is called directly by its name and by supplying the arguments for the method.
The name used in the call must exactly match a public static method in the class specified. If
the method name and the number of arguments that were given in the function call matches
more than one method in a class, then the types of the supplied arguments are evaluated for
the best match. If a match cannot be found unambiguously, an error is reported.

Note: A field in a .NET class is considered to be a method without any argument. A property
is called using the syntax get_PropertyName().

Examples
An XSLT example showing a call to a method with one argument (System.Math.Sin(arg)):

<xsl:value-of select="math:Sin(30)" xmlns:math="clitype:System.Math"/>

An XSLT example showing a call to a field (considered a method with no argument) (
System.Double.MaxValue()):

<xsl:value-of select="double:MaxValue()" xmlns:double="
clitype:System.Double"/>

An XSLT example showing a call to a property (syntax is get_PropertyName()) (
System.String()):

<xsl:value-of select="string:get_Length('my string')" xmlns:string="
clitype:System.String"/>

An XQuery example showing a call to a method with one argument (System.Math.Sin(arg)):

<sin xmlns:math="clitype:System.Math">
 { math:Sin(30) }
</sin>

102 Engine Information Extensions

© 2008 Altova GmbHAltovaXML 2008

.NET: Instance Methods and Instance Fields

An instance method has a .NET object passed to it as the first argument of the method call.
This .NET object typically would be created by using an extension function (for example a
constructor call) or a stylesheet parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes"/>
 <xsl:template match="/">
 <xsl:variable name="releasedate"
 select="date:new(2008, 4, 29)"
 xmlns:date="clitype:System.DateTime"/>
 <doc>
 <date>
 <xsl:value-of select="date:ToString(date:new(2008, 4, 29))"
 xmlns:date="clitype:System.DateTime"/>
 </date>
 <date>
 <xsl:value-of select="date:ToString($releasedate)"
 xmlns:date="clitype:System.DateTime"/>
 </date>
 </doc>
 </xsl:template>
</xsl:stylesheet>

In the example above, a System.DateTime constructor (new(2008, 4, 29)) is used to create a
.NET object of type System.DateTime. This object is created twice, once as the value of the
variable releasedate, a second time as the first and only argument of the
System.DateTime.ToString() method. The instance method System.DateTime.ToString()
is called twice, both times with the System.DateTime constructor (new(2008, 4, 29)) as its
first and only argument. In one of these instances, the variable releasedate is used to get the
.NET object.

Instance methods and instance fields
The difference between an instance method and an instance field is theoretical. In an instance
method, a .NET object is directly passed as an argument; in an instance field, a parameter or
variable is passed instead—though the parameter or variable may itself contain a .NET object.
For example, in the example above, the variable releasedate contains a .NET object, and it is
this variable that is passed as the argument of ToString() in the second date element
constructor. Therefore, the ToString() instance in the first date element is an instance
method while the second is considered to be an instance field. The result produced in both
instances, however, is the same.

Datatypes: XPath/XQuery to .NET

When a .NET extension function is used within an XPath/XQuery expression, the datatypes of
the function's arguments are important for determining which one of multiple .NET methods
having the same name is called.

In .NET, the following rules are followed:

 If there is more than one method with the same name in a class, then the methods
available for selection are reduced to those that have the same number of arguments
as the function call.

 The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly

© 2008 Altova GmbH

Extensions 103Engine Information

AltovaXML 2008

converted to a corresponding .NET datatype. If the supplied XPath/XQuery type can be
converted to more than one .NET type (for example, xs:integer), then that .NET type
is selected which is declared for the selected method. For example, if the .NET method
being called is fx(double) and the supplied XPath/XQuery datatype is xs:integer,
then xs:integer will be converted to .NET's double datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean
types to .NET datatypes.

xs:string StringValue, string

xs:boolean BooleanValue, bool

xs:integer IntegerValue, decimal, long, integer,
short, byte, double, float

xs:float FloatValue, float, double

xs:double DoubleValue, double

xs:decimal DecimalValue, decimal, double, float

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and
XQuery) will also be converted to the .NET type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct .NET method based on the
supplied information. For example, consider the following case.

 The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the
method mymethod(float).

 However, there is another method in the class which takes an argument of another
datatype: mymethod(double).

 Since the method names are the same and the supplied type (xs:untypedAtomic)
could be converted correctly to either float or double, it is possible that xs:
untypedAtomic is converted to double instead of float.

 Consequently the method selected will not be the required method and might not
produce the expected result. To work around this, you can create a user-defined
method with a different name and use this method.

Types that are not covered in the list above (for example xs:date) will not be converted and will
generate an error.

Datatypes: .NET to XPath/XQuery

When a .NET method returns a value and the datatype of the value is a string, numeric or
boolean type, then it is converted to the corresponding XPath/XQuery type. For example, .
NET's decimal datatype is converted to xsd:decimal.

When a .NET object or a datatype other than string, numeric or boolean is returned, you can
ensure conversion to the required XPath/XQuery type by first using a .NET method (for
example System.DateTime.ToString()) to convert the .NET object to a string. In XPath/
XQuery, the string can be modified to fit the lexical representation of the required type and then
converted to the required type (for example, by using the cast as expression).

104 Engine Information Extensions

© 2008 Altova GmbHAltovaXML 2008

3.6.3 MSXSL Scripts for XSLT

The <msxsl:script> element contains user-defined functions and variables that can be called
from within XPath expressions in the XSLT stylesheet. The <msxsl:script> is a top-level
element, that is, it must be a child element of <xsl:stylesheet> or <xsl:transform>.

The <msxsl:script> element must be in the namespace urn:schemas-microsoft-com:xslt
(see example below).

Scripting language and namespace
The scripting language used within the block is specified in the <msxsl:script> element's
language attribute and the namespace to be used for function calls from XPath expressions is
identified with the implements-prefix attribute (see below).

<msxsl:script language="scripting-language" implements-prefix="user-namespace-
prefix">

 function-1 or variable-1
 ...
 function-n or variable-n

</msxsl:script>

The <msxsl:script> element interacts with the Windows Scripting Runtime, so only languages
that are installed on your machine may be used within the <msxsl:script> element. The .NET
Framework 2.0 platform or higher must be installed for MSXSL scripts to be used.
Consequently, the .NET scripting languages can be used within the <msxsl:script> element.

The language attribute accepts the same values as the language attribute on the HTML
<script> element. If the language attribute is not specified, then Microsoft JScript is assumed
as the default.

The implements-prefix attribute takes a value that is a prefix of a declared in-scope namespace.
This namespace typically will be a user namespace that has been reserved for a function
library. All functions and variables defined within the <msxsl:script> element will be in the
namespace identified by the prefix specified in the implements-prefix attribute. When a
function is called from within an XPath expression, the fully qualified function name must be in
the same namespace as the function definition.

Example
Here is an example of a complete XSLT stylesheet that uses a function defined within a
<msxsl:script> element.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt"
 xmlns:user="http://mycompany.com/mynamespace">

 <msxsl:script language="VBScript" implements-prefix="user">
 <![CDATA[
 ' Input: A currency value: the wholesale price
 ' Returns: The retail price: the input value plus 20% margin,
 ' rounded to the nearest cent
 dim a as integer = 13
 Function AddMargin(WholesalePrice) as integer

© 2008 Altova GmbH

Extensions 105Engine Information

AltovaXML 2008

 AddMargin = WholesalePrice * 1.2 + a
 End Function
]]>
 </msxsl:script>

 <xsl:template match="/">
 <html>
 <body>
 <p>
 Total Retail Price =
 $<xsl:value-of select="user:AddMargin(50)"/>

 Total Wholesale Price =
 $<xsl:value-of select="50"/>

 </p>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Datatypes
The values of parameters passed into and out of the script block are limited to XPath datatypes.
This restriction does not apply to data passed among functions and variables within the script
block.

Chapter 4

License Agreement

108 License Agreement

© 2008 Altova GmbHAltovaXML 2008

4 License Agreement

THIS IS A LEGAL DOCUMENT -- RETAIN FOR YOUR RECORDS
ALTOVA DEVELOPER LICENSE AGREEMENT

FOR ALTOVAXML SOFTWARE
Licensor:

Altova GmbH
Rudolfsplatz 13a/9
A-1010 Wien
Austria

Important – Read Carefully. Notice to User

This Altova Developer License Agreement ("DLA") governs your right to use, bundle,
integrate and distribute AltovaXML software (the "Software"). Additional information
about the Software can be found on the Altova Web Site. This DLA is a legal document
between you and Altova GmbH ("Altova"). It is important that you read this document
before using the Altova-provided software and any accompanying documentation,
including, without limitation, printed materials, 'online' files, or electronic documentation
("Documentation"). By installing the Software, or including the Software in your
application, or distributing the Software, or otherwise using the Software, you agree to be
bound by the terms of this DLA as well as the Altova Privacy Policy ("Privacy Policy")
including, without limitation, the warranty disclaimers, limitation of liability, data use and
termination provisions below. You agree that this agreement is enforceable like any
written agreement negotiated and signed by you. If you do not agree, you are not licensed to
use or distribute the Software, and you must destroy any downloaded copies of the Software in
your possession or control. Please go to our Web site at
http://www.altova.com/ALTOVAXMLdla to download and print a copy of this DLA for your
files and http://www.altova.com/privacy to review the privacy policy.

1. SOFTWARE LICENSE
(a) License Grant. Upon your acceptance of this DLA, Altova grants you a non-exclusive,
non-transferable limited worldwide license to: (i) develop software applications that include the
Software and/or Documentation, (ii) reproduce the Software and/or Documentation, and (iii)
distribute the Software in executable form and Documentation in the manner hereinafter
provided to end users for the purpose of being used in conjunction with a software application
developed by you.
(b) Internal Use. You may install the Software on a server within your network for the purpose
of downloading and installing the Software (to an unlimited number of client computers on your
internal network).
(c) External Use. You may distribute the Software and/or Documentation to any third party
electronically or via download from the website or on physical media such as CD-ROMS or
diskettes as part of or in conjunction with products that you have developed.
(d) Distribution Restrictions. In addition to the restrictions and obligations provided in other
sections of this DLA, your license to distribute the Software and/or Documentation is further
subject to all of the following restrictions: (i) the Software and/or Documentation shall only be
licensed and not sold; (ii) you may not make the Software and/or Documentation available as a
stand alone product and if distributed as part of a product bundle you may charge for the product
bundle provided that you license such product bundle at the same or lower fee at which you
license any reasonably equivalent product bundle which does not include the Software; (iii) you
must use the Software and/or Documentation provided by Altova AS IS and may not impair,
alter or remove Altova's copyright or license statements or any other files; and (iv) other Altova
products cannot be distributed or used under this DLA.
(e) Title. This DLA gives you a limited license to reproduce and distribute the Software and/or

http://www.altova.com/ALTOVAXMLdla
http://www.altova.com/privacy

© 2008 Altova GmbH

 109License Agreement

AltovaXML 2008

Documentation. Altova and its suppliers retain all right, title and interest, including all copyright
and intellectual property rights, in and to, the Software and/or Documentation and all copies
thereof. All rights not specifically granted in this DLA are reserved by Altova.
(f) Reverse Engineering. You may not reverse engineer, decompile, disassemble or otherwise
attempt to discover the source code, underlying ideas, underlying user interface techniques or
algorithms of the Software by any means whatsoever, directly or indirectly, or disclose any of
the foregoing, except to the extent you may be expressly permitted to decompile under
applicable law if , it is essential to do so in order to achieve operability of the Software with
another software program, and you have first requested Altova to provide the information
necessary to achieve such operability and Altova has not made such information available.
Altova has the right to impose reasonable conditions and to request a reasonable fee before
providing such information. Any information supplied by Altova or obtained by you, as
permitted hereunder, may only be used by you for the purpose described herein and may not be
disclosed to any third party or used to create any software which is substantially similar to the
expression of the Software.
(g) Additional Restrictions. You may not loan, rent, lease, sublicense, distribute or otherwise
transfer all or any portion of the Software and/or Documentation to third parties except to the
limited extent expressly provided herein. You may not copy, distribute or make derivative works
of the Software and/or Documentation except as expressly set forth above, and any copies that
you are permitted to make pursuant to this DLA must contain the same copyright, patent and
other intellectual property markings that appear on or in the Software and/or Documentation.
You may not alter, modify, adapt or translate the Software and/or Documentation or any part
thereof. You may not, directly or indirectly, encumber or suffer to exist any lien or security
interest on the Software; knowingly take any action that would cause the Software and/or
Documentation to be placed in the public domain; or use the Software and/or Documentation in
any computer environment not specified in this DLA. You will comply with applicable law and
Altova's instructions regarding the use of the Software and/or Documentation. You agree to
notify your employees and agents who may have access to the Software and/or Documentation
of the restrictions contained in this DLA and to ensure their compliance with these restrictions.
You agree to indemnify, hold harmless, and defend Altova from and against any claims or
lawsuits, including attorney's fees that arise or result from your use or distribution of the
Software and/or Documentation.

2. INTELLECTUAL PROPERTY RIGHTS
Acknowledgement of Altova's Rights. You acknowledge that the Software and/or
Documentation and any copies that you are authorized by Altova to make are the intellectual
property of and are owned by Altova and its suppliers. The structure, organization and code of
the Software and/or Documentation are the valuable trade secrets and confidential information
of Altova and its suppliers. The Software and/or Documentation is protected by copyright,
including without limitation by United States Copyright Law, international treaty provisions and
applicable laws in the country in which it is being used. You acknowledge that Altova retains the
ownership of all patents, copyrights, trade secrets, trademarks and other intellectual property
rights pertaining to the Software and/or Documentation, and that Altova's ownership rights
extend to any images, photographs, animations, videos, audio, music, text and "applets"
incorporated into the Software and/or Documentation and all accompanying printed materials.
You will take no actions which adversely affect Altova's intellectual property rights in the
Software and/or Documentation. Trademarks shall be used in accordance with accepted
trademark practice, including identification of trademark owners' names. Trademarks may only
be used to identify printed output produced by the Software, and such use of any trademark does
not give you any right of ownership in that trademark., XMLSPY, AUTHENTIC,
STYLEVISION, MAPFORCE, SCHEMAAGENT, DIFFDOG, UMODEL MARKUP YOUR
MIND, AXAD, NANONULL, and ALTOVA are trademarks and/or registered trademark of
Altova GmbH. Unicode and the Unicode Logo are trademarks of Unicode, Inc. Windows,
Windows 95, Windows 98, Windows NT, Windows 2000 and Windows XP are trademarks of
Microsoft. W3C, CSS, DOM, MathML, RDF, XHTML, XML and XSL are trademarks
(registered in numerous countries) of the World Wide Web Consortium (W3C); marks of the

110 License Agreement

© 2008 Altova GmbHAltovaXML 2008

W3C are registered and held by its host institutions, MIT, INRIA and Keio. Except as expressly
stated above, this DLA does not grant you any intellectual property rights in the Software and/or
Documentation. Notifications of claimed copyright infringement should be sent to Altova's
copyright agent as further provided on the Altova Web site.

3. WARRANTY DISCLAIMER AND LIMITATION OF LIABILITY
(a) THE SOFTWARE AND/OR DOCUMENTATION ARE PROVIDED TO YOU FREE OF
CHARGE, AND ON AN "AS-IS" BASIS. ALTOVA PROVIDES NO TECHNICAL
SUPPORT OR WARRANTIES FOR THE SOFTWARE AND/OR DOCUMENTATION. TO
THE MAXIMUM EXTENT PERMITTED BY LAW, ALTOVA AND ITS SUPPLIERS
DISCLAIM ALL WARRANTIES AND REPRESENTATIONS, WHETHER EXPRESS,
IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY IMPLIED
WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE; MERCHANTABILITY;
SATISFACTORY QUALITY, INFORMATIONAL CONTENT, OR ACCURACY, QUIET
ENJOYMENT, TITLE, AND NON- INFRINGEMENT. ALTOVA DOES NOT WARRANT
THAT THE SOFTWARE IS ERROR-FREE OR WILL OPERATE WITHOUT
INTERRUPTION. IF APPLICABLE LAW REQUIRES ANY WARRANTIES WITH
RESPECT TO THE SOFTWARE, ALL SUCH WARRANTIES ARE LIMITED IN
DURATION TO 30 DAYS FROM THE DATE OF INSTALLATION OR USE. SOME
STATES DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE
ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER LEGAL RIGHTS
THAT VARY FROM STATE TO STATE. YOU AGREE THAT YOU ARE SOLELY
RESPONSIBLE FOR THE ACCURACY AND ADEQUACY OF THE SOFTWARE FOR
YOUR INTENDED USE AND YOU WILL INDEMNIFY AND HOLD HARMLESS
ALTOVA FROM ANY 3RD PARTY SUIT TO THE EXTENT BASED UPON THE
ACCURACY AND ADEQUACY OF THE SOFTWARE AND/OR DOCUMENTATION IN
YOUR USE. WITHOUT LIMITATION, THE SOFTWARE IS NOT INTENDED FOR USE
IN HAZARDOUS ENVIRONMENTS REQUIRING FAIL-SAFE CONTROLS INCLUDING
WITHOUT LIMITATION THE OPERATION OF NUCLEAR FACILITIES, AIRCRAFT
NAVIGATION, COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL, LIFE
SUPPORT, OR WEAPONS SYSTEMS, WHERE THE FAILURE OF THE SOFTWARE
COULD LEAD TO DEATH, PERSONAL INJURY, OR SEVERE PHYSICAL OR
ENVIRONMENTAL DAMAGE.
(b) TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT
SHALL ALTOVA OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING,
WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY
LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE
AND/OR DOCUMENTATION, OR ANY PROVISION OF THIS DLA, EVEN IF ALTOVA
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. WHERE LEGALLY,
LIABILITY CANNOT BE EXCLUDED, BUT MAY BE LIMITED, ALTOVA'S LIABILITY
AND THAT OF ITS SUPPLIERS SHALL BE LIMITED TO THE SUM OF FIVE DOLLARS
(USD. $5.00) IN TOTAL. BECAUSE SOME STATES AND JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY, THE ABOVE LIMITATION
MAY NOT APPLY TO YOU. IN SUCH STATES AND JURISDICTIONS, ALTOVA'S
LIABILITY AND THAT OF ITS SUPPLIERS SHALL BE LIMITED TO THE GREATEST
EXTENT PERMITTED BY LAW. THE FOREGOING LIMITATIONS ON LIABILITY ARE
INTENDED TO APPLY TO THE WARRANTIES AND DISCLAIMERS ABOVE AND ALL
OTHER ASPECTS OF THIS DLA.

4. DATA USE
The terms and conditions of the Privacy Policy are set out in full at
http://www.altova.com/privacy and are incorporated by reference into this DLA. By your
acceptance of the terms of this DLA or use of the Software, you authorize the collection, use and

http://www.altova.com/privacy

© 2008 Altova GmbH

 111License Agreement

AltovaXML 2008

disclosure of information collected by Altova for the purposes provided for in this -DLA and/or
the Privacy Policy as revised from time to time. European users understand and consent to the
processing of personal information in the United States for the purposes described herein.
Altova has the right in its sole discretion to amend this provision of the DLA and/or Privacy
Policy at any time. You are encouraged to review the terms of the Privacy Policy as posted on
the Altova Web site from time to time.

5. EXPORT RULES AND GOVERNMENT RESTRICTED RIGHTS
The Software was developed entirely at private expense and is commercial computer software
provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the U.S.
Government or a U.S. Government contractor or subcontractor is subject to the restrictions set
forth in this Agreement and as provided in FAR 12.211 and 12.212 (48 C.F.R. §12.211 and
12.212) or DFARS 227. 7202 (48 C.F.R. §227-7202) as applicable. Consistent with the above
as applicable, Commercial Computer Software and Commercial Computer Documentation is
licensed to U.S. government end users only as commercial items and only with those rights as
are granted to all other end users under the terms and conditions set forth in this DLA.
Manufacturer is Altova GmbH, Rudolfsplatz, 13a/9, A-1010 Vienna, Austria/EU. You may not
use or otherwise export or re-export the Software or Documentation except as authorized by
United States law and the laws of the jurisdiction in which the Software and/or Documentation
was obtained. In particular, but without limitation, the Software and/or Documentation may not
be exported or re-exported (i) into (or to a national or resident of) any U.S. embargoed country
or (ii) to anyone on the U.S. Treasury Department's list of Specially Designated Nationals or the
U.S. Department of Commerce's Table of Denial Orders. By using the Software and/or
Documentation, you represent and warrant that you are not located in, under control of, or a
national or resident of any such country or on any such list.

6. TERM AND TERMINATION
Without prejudice to any other rights or remedies of Altova, this DLA may be terminated (a) by
you giving Altova written notice of termination; or (b) by Altova, for any or no reason, giving
you written notice of termination or (c) Altova giving you written notice of termination if you
fail to comply with the terms and conditions of the DLA. Upon any termination of this DLA, you
must cease all use of the Software and/or Documentation, licensed hereunder, destroy all copies
then in your possession or control and take such other actions as Altova may reasonably request
to ensure that no copies of the Software and/or Documentation remain in your possession or
control. The terms and conditions set forth in Sections 1 (e), (f), (g), 2,3, 5, 6 , and 7 survive
termination of this agreement as applicable.

7. GENERAL PROVISIONS
If you are located in the European Union and are using the Software and/or Documentation in
the European Union and not in the United States, then this DLA will be governed by and
construed in accordance with the laws of the Republic of Austria (excluding its conflict of laws
principles and the U.N. Convention on Contracts for the International Sale of Goods) and you
expressly agree that exclusive jurisdiction for any claim or dispute with Altova or relating in any
way to your use of the Software and/or Documentation resides in the Handelsgericht Wien
(Commercial Court, Vienna) and you further agree and expressly consent to the exercise of
personal jurisdiction in the Handelsgericht Wien (Commercial Court, Vienna) in connection
with any such dispute or claim.
If you are located in the United States or are using the Software and/or Documentation in the
United States then this DLA will be governed by and construed in accordance with the law of
the Commonwealth of Massachusetts, USA (excluding its conflict of laws principles and the
U.N. Convention on Contracts for the International Sale of Goods) and you expressly agree that
exclusive jurisdiction for any claim or dispute with Altova or relating in any way to your use of
the Software and/or Documentation resides in the federal or state courts of Massachusetts and
you further agree and expressly consent to the exercise of personal jurisdiction in the federal or
state courts of Massachusetts in connection with any such dispute or claim.
If you are located outside of the European Union or the United States and are not using the

112 License Agreement

© 2008 Altova GmbHAltovaXML 2008

Software and/or Documentation in the United States, then this DLA will be governed by and
construed in accordance with the laws of the Republic of Austria (excluding its conflict of laws
principles and the U.N. Convention on Contracts for the International Sale of Goods) and you
expressly agree that exclusive jurisdiction for any claim or dispute with Altova or relating in any
way to your use of the Software and/or Documentation resides in the Handelsgericht Wien
(Commercial Court, Vienna) and you further agree and expressly consent to the exercise of
personal jurisdiction in the Handelsgericht Wien (Commercial Court, Vienna) in connection
with any such dispute or claim.
This DLA will not be governed by the conflict of law rules of any jurisdiction or the United
Nations Convention on Contracts for the International Sale of Goods, the application of which is
expressly excluded. This DLA contains the entire agreement and understanding of the parties
with respect to the subject matter hereof, and supersedes all prior written and oral
understandings of the parties with respect to the subject matter hereof. Any notice or other
communication given under this DLA shall be in writing and shall have been properly given by
either of us to the other if sent by certified or registered mail, return receipt requested, or by
overnight courier to the address shown on Altova's Web site for Altova and the address shown in
Altova's records for you, or such other address as the parties may designate by notice given in
the manner set forth above. This DLA will bind and inure to the benefit of the parties and our
respective heirs, personal and legal representatives, affiliates, successors and permitted assigns.
The failure of either of us at any time to require performance of any provision hereof shall in no
manner affect such party's right at a later time to enforce the same or any other term of this DLA.
This DLA may be amended only by a document in writing signed by both of us. In the event of a
breach or threatened breach of this DLA by either party, the other shall have all applicable
equitable as well as legal remedies. Each party is duly authorized and empowered to enter into
and perform this DLA. If, for any reason, any provision of this DLA is held invalid or otherwise
unenforceable, such invalidity or unenforceability shall not affect the remainder of this DLA,
and this DLA shall continue in full force and effect to the fullest extent allowed by law. The
parties knowingly and expressly consent to the foregoing terms and conditions.

Last updated: 2005-06-28

© 2008 Altova GmbH

Index 113

Index

.

.NET extension functions,

constructors, 100

datatype conversions, .NET to XPath/XQuery, 103

datatype conversions, XPath/XQuery to .NET, 102

for XSLT and XQuery, 99

instance methods, instance fields, 102

overview, 99

static methods, static fields, 101

.NET interface,

example code, 60

features, 4

object Altova.AltovaXML.XMLValidator, 62

object Altova.AltovaXML.XQuery, 68

object Altova.AltovaXML.XSLT1, 64

object Altova.AltovaXML.XSLT2, 66

object model, 60

usage, 58, 60

A
Altova XSLT 1.0 Engine,

limitations and implementation-specific behavior, 76

Altova XSLT 2.0 Engine,

general information about, 79

information about, 78

Altova.AltovaXML.Application object, 60

Altova.AltovaXML.dll, 6, 58

AltovaXML,

available functionality, 5

COM interface features, 4

command line features, 4

documentation, 3

installation, 6

introduction, 3

main features of, 4

package, 4

system requirements for, 6

usage of, 10

user manual, 3

AltovaXML.jar, 36

and CLASSPATH, 6

AltovaXMLLib.dll, 6, 36

atomization of nodes,

in XPath 2.0 and XQuery 1.0 evaluation, 86

B
backwards compatibility,

of XSLT 2.0 Engine, 79

C
C# example code,

for .NET interface, 60

C++ example code,

for COM interface, 34

character entities,

in HTML output of XSLT transformation, 76

character normalization,

in XQuery document, 82

CLASSPATH,

and AltovaXML.jar, 6

collations,

in XPath 2.0, 86

in XQuery document, 82

COM interface,

Application object, 22

C++ example code, 34

example code, 32

features, 4

JScript example code, 33

object model, 21

usage, 19

Validator interface, 23

Visual Basic example code, 32

XQuery interface, 29

XSLT1 interface, 25

XSLT2 interface, 27

COM Server,

Releasing, 71

COM server object,

registering AltovaXML as, 6, 11, 20

Index

© 2008 Altova GmbH

114

com.altova.engines, 36

Command line,

features, 4

for XQuery 1.0 executions, 17

for XSLT 1.0 transformations, 14

for XSLT 2.0 transformations, 15

help, 11

usage summary, 11

validation and well-formedness check, 13

version information from, 11

count() function,

in XPath 1.0, 76

count() function in XPath 2.0,

see fn:count(), 86

D
datatypes,

in XPath 2.0 and XQuery 1.0, 86

deep-equal() function in XPath 2.0,

see fn:deep-equal(), 86

default functions namespace,

for XPath 2.0 and XQueyr 1.0 expressions, 86

in XSLT 2.0 stylesheets, 79

Dispatch Interface,

description of, 19

Documentation,

overview of, 7

Dot NET,

see .NET, 58

E
encoding,

in XQuery document, 82

Engine information, 74

Examples, 19, 32, 36, 60

Extension functions for XSLT and XQuery, 91

Extension Functions in .NET for XSLT and XQuery,

see under .NET extension functions, 99

Extension Functions in Java for XSLT and XQuery,

see under Java extension functions, 92

Extension Functions in MSXSL scripts, 104

external functions,

in XQuery document, 82

F
fn:base-uri in XPath 2.0,

support in Altova Engines, 88

fn:collection in XPath 2.0,

support in Altova Engines, 88

fn:count() in XPath 2.0,

and whitespace, 86

fn:current-date in XPath 2.0,

support in Altova Engines, 88

fn:current-dateTime in XPath 2.0,

support in Altova Engines, 88

fn:current-time in XPath 2.0,

support in Altova Engines, 88

fn:data in XPath 2.0,

support in Altova Engines, 88

fn:deep-equal() in XPath 2.0,

and whitespace, 86

fn:id in XPath 2.0,

support in Altova Engines, 88

fn:idref in XPath 2.0,

support in Altova Engines, 88

fn:index-of in XPath 2.0,

support in Altova Engines, 88

fn:in-scope-prefixes in XPath 2.0,

support in Altova Engines, 88

fn:last() in XPath 2.0,

and whitespace, 86

fn:lower-case in XPath 2.0,

support in Altova Engines, 88

fn:normalize-unicode in XPath 2.0,

support in Altova Engines, 88

fn:position() in XPath 2.0,

and whitespace, 86

fn:resolve-uri in XPath 2.0,

support in Altova Engines, 88

fn:static-base-uri in XPath 2.0,

support in Altova Engines, 88

fn:upper-case in XPath 2.0,

support in Altova Engines, 88

Functionality,

of AltovaXML, 5

functions,

see under XSLT 2.0 functions, 81

© 2008 Altova GmbH

Index 115

functions,

XPath 2.0 and XQuery 1.0, 85

H
Help,

from command line, 11

I
implementation-specific behavior,

of XSLT 2.0 functions, 81

implicit timezone,

and XPath 2.0 functions, 86

Installation,

of AltovaXML, 6

J
Java class AltovaXMLFactory,

description of, 45

Java class XMLValidator,

description of, 46

Java class XQuery,

description of, 49

Java class XSLT1,

description of, 52

Java class XSLT2,

description of, 55

Java extension functions,

constructors, 95

datatype conversions, Java to Xpath/XQuery, 98

datatype conversions, XPath/XQuery to Java, 97

for XSLT and XQuery, 92

instance methods, instance fields, 96

overview, 92

static methods, static fields, 95

Java interface,

additional documentation, 36

example code, 36

features, 4

setup, 36

summary of classes, 38, 45

usage, 36

Java interface IAltovaXMLEngine,

description of, 38

Java interface IAltovaXMLFactory,

description of, 39

Java interface IExecutable,

description of, 39

Java interface IReleasable,

description of, 40

Java interface IXMLValidator,

description of, 40

Java interface IXQuery,

description of, 42

Java interface IXSLT,

description of, 44

JScript example code,

for COM interface, 33

L
last() function,

in XPath 1.0, 76

last() function in XPath 2.0,

see fn:last(), 86

library modules,

in XQuery document, 82

M
msxsl:script, 104

N
namespaces,

in XQuery document, 82

in XSLT 2.0 stylesheet, 79

P
position() function,

in XPath 1.0, 76

Index

© 2008 Altova GmbH

116

position() function in XPath 2.0,

see fn:position(), 86

Q
QName serialization,

when returned by XPath 2.0 functions, 88

R
Raw Interface,

description of, 19

Registering AltovaXML,

as COM server object, 6, 11, 20

Releasing,

COM server, 71

S
schema validation of XML document,

for XQuery, 82

schema-awareness,

of XPath 2.0 and XQuery Engines, 86

Scripts in XSLT/XQuery,

see under Extension functions, 91

Standards conformance,

of Altova engies, 74

of Altova XML Validator, 75

U
Unregistering AltovaXML as a COM server object, 20

Usage,

of AltovaXML, 10

V
Validation,

available functionality, 5

from command line, 13

using .NET interface, 62

Version information,

from command line, 11

Visual Basic example code,

for COM interface, 32

W
Well-formedness check,

from command line, 13

using .NET interface, 62

whitespace handling,

and XPath 2.0 functions, 86

whitespace in XML document,

handling by Altova XSLT 2.0 Engine, 79

whitespace nodes in XML document,

and handling by XSLT 1.0 Engine, 76

X
XML validation,

see validation, 62

XPath 2.0 functions,

general information about, 86

implementation information, 85

see under fn: for specific functions, 86

XPath functions support,

see under fn: for individual functions, 88

XQuery,

Extension functions, 91

XQuery 1.0 Engine,

information about, 82

XQuery 1.0 functions,

general information about, 86

implementation information, 85

see under fn: for specific functions, 86

XQuery 1.0 transformations,

using .NET interface, 68

XQuery executions,

available functionality, 5

from command line, 17

xs:QName,

also see QName, 88

xsl:preserve-space, 76

© 2008 Altova GmbH

Index 117

xsl:strip-space, 76

XSLT,

Extension functions, 91

XSLT 1.0 Engine,

limitations and implementation-specific behavior, 76

XSLT 1.0 transformations,

from command line, 14

using .NET interface, 64

XSLT 2.0 Engine,

general information about, 79

information about, 78

XSLT 2.0 functions,

implementation-specific behavior of, 81

see under fn: for specific functions, 81

XSLT 2.0 stylesheet,

namespace declarations in, 79

XSLT 2.0 transformations,

from command line, 15

using .NET interface, 66

XSLT transformations,

available functionality, 5

	Introduction
	Product Features
	Available Functionality
	System Requirements and Installation
	About this Documentation

	Usage
	Command Line
	XML Validation and Well-Formedness
	XSLT 1.0 Transformations
	XSLT 2.0 Transformations
	XQuery 1.0 Executions

	COM Interface
	Registering AltovaXML as a COM Server Object
	AltovaXML Object Model
	Application
	XMLValidator
	XSLT1
	XSLT2
	XQuery
	Examples
	Visual Basic
	JScript
	C++

	Java Interface
	Interfaces
	IAltovaXMLEngine
	IAltovaXMLFactory
	IExecutable
	IReleasable
	IXMLValidator
	IXQuery
	IXSLT

	Classes
	AltovaXMLFactory
	XMLValidator
	XQuery
	XSLT1
	XSLT2

	.NET Interface
	General Usage and Example
	Altova.AltovaXML.XMLValidator
	Altova.AltovaXML.XSLT1
	Altova.AltovaXML.XSLT2
	Altova.AltovaXML.XQuery

	Explicitly releasing AltovaXML COM-Server from C# and VB.NET

	Engine Information
	Altova XML Validator
	XSLT 1.0 Engine: Implementation Information
	XSLT 2.0 Engine: Implementation Information
	General Information
	XSLT 2.0 Elements and Functions

	XQuery 1.0 Engine: Implementation Information
	XPath 2.0 and XQuery 1.0 Functions
	General Information
	Functions Support

	Extensions
	Java Extension Functions
	Java: Constructors
	Java: Static Methods and Static Fields
	Java: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to Java
	Datatypes: Java to XPath/XQuery

	.NET Extension Functions
	.NET: Constructors
	.NET: Static Methods and Static Fields
	.NET: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to .NET
	Datatypes: .NET to XPath/XQuery

	MSXSL Scripts for XSLT

	License Agreement

