-) -
A Mmaodcap
\J) Software P WHITE PAPER

The Definitive Guide
to Creating API
Documentation

CONTENTS

INtrodUCtioN T
Best Practice 1: Follow a Standard Template or Outline Reference Pages................ 2
Best Practice 2: Use a Terse, Factual Writing Style..... .5
Best Practice 3: Provide Complete Information About Each APl Component ... 6
Best Practice 4: Document All Error Messages 10
Best Practice 5: Provide Working Code Snippets for Each Method 1
Best Practice 6: Provide Flowcharts Showing Common Use Cases 12

Best Practice 7: Provide Sample Programs Demonstrating Commmon Use Cases ... 14

Best Practice 8: Provide a "Getting Started" Guide...........

Best Practice 9: Provide Performance and Tuning Information ...

Best Practice 10: Provide a Contact Person for Your API

Summary.... ,

Appendix: Sample API Reference Page ... S

About the AUTNOT

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION

Introduction

APIs stands for application programming interfaces. They are the building blocks, the code, used by
developers to code applications. For example, you won't buy any APIs off-the-shelf at Staples, but it
is likely that many of the products you can buy off the shelf were developed (coded) using APIs.

Most of the principles that apply to technical writing for other products, such as GUI-based
applications and end-user applications, apply to documenting APIs as well. But there are some major
differences that often elude technical writers moving into this area of technical writing. This white
paper covers ten best practices for writers to keep in mind:

1. Follow the standard template or outline for organizing reference pages.

2. Use a terse, factual writing style. Sentence fragments are desirable. Avoid
adjectives and adverbs.

3. Provide complete information about each APl component.

4. List all error messages alphabetically, specify the level of the message, and
provide suggested workarounds and solutions.

5. Provide working code snippets for each method, function, and resource. You
don't need complete examples, but show a common use of that element.

6. Provide flow charts showing the sequence of the most commonly used
methods for common use cases.

7. Provide sample programs demonstrating common use cases.

8. Provide a "Getting Started" guide showing how to develop a program for a
common Use cases.

9. Provide performance and tuning information.

10. Provide a contact in case developers have questions or need additional
assistance.

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION

Best Practice 1:
Follow a Standard Template
or Outline for Reference Pages

There is a commonly accepted baseline for APl documentation. That baseline is a complete,
comprehensive, and accurate set of reference pages that documents every interface, method,
function, or resource.

Most APIs use a very similar template or organizational structure for APl components, including
methods, functions, or resources. These categories of AP| elements each perform a single operation
or task, such as opening a file, starting an interactive session, and logging into a computer system.
C-type languages use the terms “method” or “function” interchangeably. The Java programming
language uses the term "method.” Web service APIs use the term "resource.” But all three names are

functionally the same and are documented in much the same way. You should follow the standard
template or outline for organizing reference pages.

Note: In this white paper, the term “method” is used to generically refer to all three terms.

An example of an API reference page template for a method is shown below.

Template or an AP| Reference Page
Method_Name

A brief description of what the method does.

Syntax

Display the actual method call used in the code.

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION

Best Practice 1: Follow a Standard Template or Outline for Reference Pages

Description

More detailed information about the method; information developers need to know to call the method.

Note: For all of the following sections, if the section doesn't apply to the specific method or has no
elements, such as no return value or has no related methods, explicitly state that by using a term
such as “None" or “Not applicable.” This tells developers that you didn't forget to put information in
those sections.

Parameters

List all of the parameters here, in the order they appear in the syntax. You can either use a pseudo-list
format as the following or put the information into a table, shown after the pseudo-list.

Parameter] - data type

What the parameter does. Optional/required. Examples.

Parametern - data type
What the parameter does. Optional/required. Examples.

Listing parameters in a table format:

Parameter Optional / Required Description Data Type

parameter1

parameter2

parametern

Return Value
Value returned by the method:
returnValue - data type

Describe the return value.

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION

Best Practice 1: Follow a Standard Template or Outline for Reference Pages

Examples

A short code snippet here, with explanation, showing use of this method.

Errors

List the errors that can be returned for this method, with the level of error and the recommended
workaround or solution.

Notes

Any supplemental, “nice to know" information.

See Also

Cross-references to related methods.

Sample API Reference Page

For a sample API reference page for the SessionLogin method, which shows the organization and
content discussed in this section, see "Appendix: Sample API Reference Page" on page 19.

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION 4

Best Practices 2.
Use a Terse, Factual Writing Style

Most of the well-established practices for technical writing also apply to documenting APIs:
Write clearly in plain English.
Be factual.
Be consistent with your terminology.
But there are some significant differences in documenting APls:
Write very tersely. Developers do not like flowery prose.

Sentence fragments are acceptable. For example, when you are describing what a
specific method does, it is acceptable and desirable to use a sentence fragment. For
example, for a sessionTerm method, your brief description would read, “Ends a session
and closes all open files."

Avoid adjectives and adverbs. Developers are very factual. They don't want to read how
fast something works, how easy itis to use, etc. Developers will quickly lose confidence
and trust in your documentation if you use adjectives and adverbs.

Be alert for homegrown terms that are used by a specific developer or team of
developers that are not industry-standard. If you encounter a jargon-like term that you
don't recognize, ask your developer or team if that is a standard term in your industry.
If it isn't, push to determine the correct standard term. If it is a new term but your
team insists it should be used, define it the first time you use it in your documentation.
(Optionally, consider creating a glossary where you define all of the new terms used in
your APL.)

Often method names are formed by concatenating many words, which leads to very
long terms. Accept these as is. Do NOT make up your own terms, because you think
the names are too long or break awkwardly in printed or PDF output.

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION

Best Practices 3:
Provide Complete Information About
Fach APl Component

Let's look at each of these sections of the API template, in the order they should appear on the
reference pages.

Method_Name

The Method_Name should be your heading at the top of a reference page. Most APl documentation
does not include "Method" after the Method_Name. Each method is documented starting on a new
page. This makes it easy for developers to view or print the complete reference information for a
single method. It is confusing if you start a new section for a new method partway through a page for
printed documentation. For online help, having each reference page as a separate topic is much
easier for developers to read and find the information they need.

Following the Method_Name, provide a brief description of what the method does. For example:

Logs into a previously created session, where a session is an interactive sequence of user requests
and system responses.

Syntax

In this section, you document the complete syntax for the method, exactly as it is used in the code.
For example:

STATUS SessionLogin(
SESSION_HANDLE session,
const STRING username,
const STRING password,
UINT32 timeout);

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION

Best Practice 3: Provide Complete Information About Each APl Component

The "STATUS" that starts the syntax is the status code returned by this method. Many methods
return a status code or value that can be used to determine what the program does next or some

alphanumeric value that will be used to calculate some math result or data to be stored or otherwise
acted on.

Next is the method name, SessionLogin, followed by an open parenthesis. Then, all the parameters
preceded by their data types, separated by commas. The following table shows the relationship
between the parameter and its data type. You do not show the syntax this way in your
documentation.

Data Type Parameter

const STRING username
const STRING password
UINT32 timeout

The syntax is closed with a closing parenthesis followed by a semicolon. This is standard coding in
many programming languages.

Description
In this section, provide more detailed information about the method. This should be essential
information. As a guideline, if 90% of the developers need to know this information or will find it

useful, include the information in this section. For example:

An application can maintain multiple sessions. You can have up to 8 sessions per application. You
need to use the same API User name for each (you will get an ERR_LUSERNAME_NOT_VALID error
if you do not).

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION 7

Best Practice 3: Provide Complete Information About Each API Component

Parameters

In this section, list all the parameters, in the order they appear in the syntax. For example:
session - SESSION_HANDLE
A handle to the session.
username - STRING

The API User name defined in the TPM. The TPM must have Topic entitlement rights (publish or
subscribe) associated with this APl User name before you can publish or subscribe to messages on
those Topics.

password - STRING

The password for the API User in string format. The secure value will be put into the securityContext
structure.

timeout - UINT32

The length of time that a login will be attempted before failure. This value is in milliseconds. A timeout
of 0 means the login attempt will never timeout, and will continue to retry to connect should the initial
connect attempt fail.

Return Value
In this section, if the method returns a value, you document that value in the code and what the data

type is. Depending on the number of return values, you might need to document all of the possible
return values. If the method does not return a value, enter "None." For example:

STATUS - If the function succeeds, then OK is returned; otherwise, one of the status codes listed
in the ERRORS section is returned.

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION 8

Best Practice 3: Provide Complete Information About Each APl Component

Examples

In this section, you provide a small code snippet that shows a typical use or call of the specific
method being documented. Developers often copy these code snippets into the code they are writing
and customize as needed for their application. For example:

returnCode = SessionLogin(sess, DFT_USERNAME, DFT_ PASSWORD, 5000);

Errors

In this section, you list all possible error messages that can be returned by a method, in alphabetical
order, with the recommended solution or workaround. For example:

ERR_NETWORK_WRITE — A generic network error. Check the client log for more information.
ERR_NULL_PASSWORD - You didn't supply a password. Enter a password as described above
and re-run your application.

ERR_NULL_USERNAME — You didn't supply a username. Enter a userName as described above
and re-run your application.

ERR_USER_NOT_LOGGED_IN — You attempted to use a session without logging in first.

Notes

In this section, you include any supplemental, "nice to know" information. This is information that
probably only will be used by 15% of the developers or used 15% of the time. For example:

Before calling SessionlLogin, you will need your APl User name and password.

When your application is finished processing all messages, call SessionTerm to end the established
session.

See Also

In this section, you provide hyperlinked cross-references to all of the related methods for the method
being documented. For example:

SessionLogin
SessionTerm

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION 9

Best Practices 4
Document All Error Messages

You should list all possible error messages that can be returned by a method, in alphabetical order.
Putting the error messages in alphabetical order makes it easy for developers to find the specific error
message of interest, especially if a method can return many error messages, which is not uncommon
in this area. This also makes it easier for you to maintain the list and ensure you don't have
duplicates, which leads to confusion. Developers might be able to find some of the error messages
returned for a method in the source code, but that is all they can mine from the source code. Unless
an error message is intuitively obvious, such as ERR_NULL_PASSWORD, having the error

message doesn't help them. You should describe what the error message means and the level
(informational, error, fatal, severe, warning, etc.). It is very helpful if you describe what caused the
error and the recommended solution or workaround for the error. For example:

ERR_NETWORK_WRITE — A generic network error. Check the client log for more information.

ERR_NULL_PASSWORD — You didn't supply a password. Enter a password as described above
and re-run your application.

Tip: Often an error message can be returned for multiple methods. If your authoring tool provides
snippets capability, consider making an error message that is returned for many methods into a
reusable snippet that you call as needed. This will make maintenance of the description for an error
message much easier.

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION 10

Best Practices b:
Provide Working Code Snippets for
Fach Method

Developers love examples. They will copy these from your documentation, paste them into their

code, modify as needed, and continue working. So, it is important to provide working code snippets.
You do not need to have a complete working example, including all header information, included files,
etc., but the example should work when pasted into an existing program. These examples should
show typical or common use cases for the method. You will likely need to work with your developers
to determine typical or common use cases. It is your responsibility to test code snippets given to you
by developers to ensure they will work when used in a working program. If you cannot get an example
to work, it is appropriate to ask the developer who provided it why it doesn't work. And work with
him/her to correct the example or provide another example that does work. For example:

returnCode = SessionLogin(sess, DFT_USERNAME, DFT_PASSWORD, 5000);

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION 11

Best Practices 6:
Provide Flowcharts Showing
Common Use Cases

You should provide flowcharts showing the sequence of the most commonly used methods for
common use cases.

APlIs often have many methods in them, having several hundred methods is common. However, the
rule that 85% of your users will only use 15% of your product applies to APIs as well. The challenge
for API users is to determine which methods need to be used all or most of the time vs. which are
only used occasionally or rarely. One way of showing the most commonly used methods is to provide
flowcharts for the most common use cases, showing the methods used in those use cases and the

order they should be called.

For example, the following flowchart from an API documentation set shows how to log into a system:

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION

12

Best Practies 6: Provide Flowcharts Showing Common Use Cases

Set any application parameters (AppCigiet)
Optionally, verify them [AppCfgGet)

\

Start your application (Applnitialize)

v

Create a new session (SessionNew)

\Z

Optionally, change the behavior
of the login [SessionCfg Set)

y

Optionally, verify the session configuration
parameters (SessionCig Get)

v

Login to a session (SessionLogin)

2

Perform any operations
(Publishing messages/Subscribing to messages)

\Z

End the application session (Sessionlerm)

This flowchart is very helpful to developers, because it shows the required methods to call to log into
a system and what order to call them, as well as some optional methods that might be helpful. Note
the brief but concise descriptions of what each method does or what operation is performed at each
step.

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION 13

Best Practices 7:
Provide Sample Programs
Demonstrating Common Use Cases

Developers love to see sample programs included with APIs. Developers use them to experiment
and see how your API works without having to learn your API in detail. There are several
considerations you need to address with your sample programs to make them useful to your

customers:

Sample programs should show common or typical use cases for your API.
They should be complete and run with no errors or warnings.

You should provide readme files explaining what the program does, how to run it, any
necessary input data, and expected results.

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION

14

Best Practices 8:
Provide a "Getting Started” Guide

It is very helpful to identify and document how to program a common use case as a "Getting

Started Guide" for new users of your API. This solves the problem of information overload with large
APIs. Also, developers prefer to copy and paste existing code and modify it for their use, reusing as
much as possible. The challenge for the developers and writers creating an APl is to know how users
might use the API, what business problems your users are trying to solve, and what some typical use
cases are for your users. It is sometimes helpful to talk to staff in marketing or product management,
who often have more contact with users than in-house development teams.

The following example shows the outline for a "Getting Started Guide" that shows developers how to
speech-enable an application:

Quick Start: Creating a Simple Application
1. Overview - Explains what the Quick Start covers.

2. To speech-enable a simple application - Provides detailed, specific steps to write
the code needed to speech-enable an application.

3. To add voice commands to the simple application - Provides detailed, specific
steps to write the code needed to add voice commands to the application.

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION 15

Best Practices 9:
Provide Performance and Tuning
nformation

Many APls are used to process large amounts of data at high speeds. Developers often want to "tune
up" the performance of your API beyond your out-of-the-box performance. Even if you provide
parameters and switches to customize various performance metrics, it is often hard and
timeconsuming for developers to try the various combinations of parameters, switches, and ranges of
valid values. If your product is tunable, at a minimum, you should provide the following information for
all tuning parameters and switches:

Parameter or switch name, an explanation of the parameter or switch, the range of
valid values, and default values.

What effect the default value has and why that value was chosen.

Guidance on setting the default value to other values in the valid value range according
to your specific needs. For example, if you need more data throughput, change
parameter x to a value such as the following: n. Conversely, if you need less or more
latency, change the value of parameter x to the following: m. Developers can and should
experiment around the recommended setting for a specific scenario once they set the
value to your recommended setting. But your recommendation, based on your own
testing in-house, saves your users from spending a lot of unnecessary time guessing
what values to try to achieve a desired result.

For example, you might have a PUB_BW_LIMIT (publisher maximum bandwidth), tuning parameter
with the following description:

PUB_BW_LIMIT - The maximum bandwidth, in Mbps, of the publisher. The default value is 100 (100
Mbps). The minimum value is 0, which disables the limit. Use this parameter if you noticed (or your
sys-admin told you) that your publisher was flooding the network. You might use it to limit a
particularly fast publisher to half the link (500) so that it doesn't overwhelm the subscriber.

You should not use increments smaller than 50.

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION 16

Best Practices 10:
Provide a Contact Person for you API

Though it is common to have a Technical Support department, whether you work in a large or small
company and provide a means of submitting questions about using your company's products by
email, telephone, or some web-based interface, APIs present special challenges to this practice:

Your users are probably software developers themselves, and very computer-literate.
Their questions might overwhelm tech support people, who might be inexperienced or
don't have deep programming backgrounds.

Often, developers need to submit log files, screenshots of the run of an application, or
other information that is cumbersome at best to communicate by telephone.

Set up a special email account for your API that is directed either to a high-level technical support
person who is fluent with your API(s) or a developer on your team who is designated to respond to
customer queries. Instead of the common pattern of “support@yourCompany.com”, create an
account, such as "nameOfYourAPI_support@yourCompany.com” and have all queries go to the
designated technical support person or designated developer.

If you are documenting internal APIs for internal use only, consider specifying the actual developer
who is assigned to support internal users of that API. In this case, your email link would go directly to
that developer, Jane_Developer@yourCompany.com.

Publish a short topic named something like "Technical Support” that you include in your
documentation after your content topics/chapters. Suggested content:

For more information or help on using this API, contact Jane_Developer@yourCompany.com.
Providing an email link to a knowledgeable technical support or designated API developer benefits
both your company and customers. Your company resolves customer issues faster, thus saving time

and money. Your customers get their questions resolved faster and more accurately. Both your
company and customer get increased customer satisfaction.

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION 17

Summary

To review the ten best practices for APl documentation:
1. Use a standard template or outline to organize reference pages.

2. Use a terse, factual writing style. Sentence fragments are desirable. Avoid adjectives and
adverbs.

3. Document every APl component completely.

4. List all error messages alphabetically, specify the level of the message, and provide
suggested workarounds and solutions.

5. Provide a working code snippet that shows a common use for each method.
6. Show the sequence of the most commonly used methods for common use cases.
7. Provide full, working sample programs that demonstrate common use cases for your API.

8. Develop some common use cases and provide a "Getting Started” guide that documents
how to program for them.

9. Provide performance and tuning information with recommended adjustments to default
values, to improve performance for unusual scenarios.

10. Designate a contact person, who is fluent with your API, as a resource for your users, not
just a generic "tech_support@xyz.com” mailing address.

By implementing these best practices, you will provide documentation that not only meets the needs

and expectations of your users but will substantially help them get started quickly in learning and
using your API to solve their technical challenges.

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION

18

Appendix: Sample AP| Reference Page

SessionLogin

Logs into a previously created session, where a session is an interactive sequence of user requests
and system responses.

Syntax

STATUS SessionLogin(
SESSION_HANDLE session,
const STRING username,
const STRING password,
UINT32 timeout);

Description

An application can maintain multiple sessions. You can have up to 8 sessions per application. You
need to use the same API User name for each (you will get an ERR_USERNAME_NOT_VALID error
if you do not).

Parameters

session - SESSION_HANDLE

Input. A handle to the session.

username - STRING

Input. The API User name defined in the host system.
password - STRING

Input. The password for the API User in string format.
timeout - UINT32

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION

19

Appendix: Sample API Reference Page

Input. The length of time that a login will be attempted before failure. This value is in milliseconds. A
timeout of 0 means the login attempt will never timeout, and will continue to retry to connect should
the initial connect attempt fail.

Return Value

STATUS - If the function succeeds, then OK is returned, otherwise one of the status codes listed in
the ERRORS section is returned.

Errors

ERR_BAD_NETWORK_CONFIG — Error setting up the SSL channel.

ERR_NULL_PASSWORD — You didn't supply a password. Enter a password as described above
and re-run your application.

ERR_NULL_USERNAME — You didn't supply a username. Enter a userName as described above
and re-run your application.

ERR_USER_NOT_LOGGED_IN — You attempted to use a session without logging in first.

Notes
Before calling SessionlLogin, you will need your APl User name and password.

When your application is finished processing all messages, call SessionTerm to end the established
session.

Example

returnCode = SessionLogin(sess, DFT_USERNAME, DFT_PASSWORD,5000);

See Also

SessionlLogin
SessionTerm

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION 20

About the Author

Ed Marshall is an independent consultant technical writer and the sole proprietor of Marshall
Documentation Consulting, with over 28 years of experience. He specializes in technical
documentation for developers, including APIs (application programming interfaces), SDKs
(software developer's kits), Web Services products, etc. Over his career, he has developed
expertise in using tools to “let the computer do the work,"” such as advanced tools for editing
files, comparing files, and searching and replacing text. He has given many presentations at
local STC chapters and Summits, the WritersUA conferences, Information Development World,
the TEKOM trade show in Germany (October 2012) at the organization's invitation, and many other
events. He is a Certified MadCap Advanced Developer (MAD) for MadCap Flare. His web site is
www.MarshallDocumentationServices.com. He can be reached at ed.marshall@verizon.net,
on LinkedIn, and on Twitter @EdMarshall.

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION

21

http://www.MarshallDocumentationServices.com
mailto:ed.marshall%40verizon.net?subject=

Additional Resources

Here are some valuable resources to continue your exploration into single-sourcing and localization.

Flare Webinars:

+ "Using MadCap Flare to Support Your International Content Strategy”
http://www.madcapsoftware.com/webinars/using-madcap-flare-to-support-your-interna-

tionalstrategy/

+ "ACase Study in Translation Management — How to Reduce Costs by 90% While Enabling
New Markets"
http://www.madcapsoftware.com/webinars/case-study-in-translation-management-how-
toreduce-cost-by-while-enabling-new-markets/

+ "Case Study: How Hewlett Packard Enterprise Leverages MadCap Lingo to Reduce
Translation Costs by 50%"
https://www.madcapsoftware.com/webinars/case-study-hewlett-packard-
enterpriseleverages-madcap-lingo-reduce-translation-costs/

+ Jennifer Schudel, Advanced Language Translations: Presentation, "Five Things to Consider
When Developing Multilingual Content”

http://www.madcapsoftware.com/webinars/madcap-flare-and-translation-five-things-
toconsider-when-developing-multilingual-content/

e-Books and Sites

Venga Global — eBook: “Single-Sourcing: Translate Once, Reuse Many Times"
http://blog.vengaglobal.com/single-sourcing-translate-once-reuse-many-times

Val Swisher, Content Rules
http://contentrules.com

THE DEFINITIVE GUIDE TO CREATING API DOCUMENTATION 22

_ooking for
More Resources?

0 B B

Browse our library of webinars, videos,
white papers and more.

Learn more at madcapsoftware.com/resources .

https://www.madcapsoftware.com/resources/

