
The Definitive Guide
to Creating API
Documentation

WHITE PAPE R

Table of Contents
Introduction 1

Best Practice 1: Followa Standard Template orOutline for Reference Pages 2

Best Practice 2: Use a Terse, Factual Writing Style 5

Best Practice 3: Provide Complete Information About Each APIComponent 6

Best Practice 4: Document All ErrorMessages 10

Best Practice 5: Provide Working Code Snippets for EachMethod 11

Best Practice 6: Provide Flowcharts Showing Common Use Cases 12

Best Practice 7: Provide Sample Programs Demonstrating Common Use Cases 14

Best Practice 8: Provide a “Getting Started”Guide 15

Best Practice 9: Provide Performance and Tuning Information 16

Best Practice 10: Provide aContact Person for YourAPI 17

Summary 18

Appendix: Sample API Reference Page 19

About the Author 21

iii

Introduction
APIs stands for application programming interfaces. They are the building blocks, the code, used by
developers to code applications. For example, you won't buy any APIs off-the-shelf at Staples, but it
is likely that many of the products you can buy off the shelf were developed (coded) using APIs.

Most of the principles that apply to technical writing for other products, such as GUI-based
applications and end-user applications, apply to documenting APIs as well. But there are somemajor
differences that often elude technical writers moving into this area of technical writing. This white
paper covers ten best practices for writers to keep inmind:

1. Follow the standard template or outline for organizing reference pages.

2. Use a terse, factual writing style. Sentence fragments are desirable. Avoid adjectives and
adverbs.

3. Provide complete information about each API component.

4. List all error messages alphabetically, specify the level of themessage, and provide
suggested workarounds and solutions.

5. Provide working code snippets for eachmethod, function, and resource. You don’t need
complete examples, but show a common use of that element.

6. Provide flow charts showing the sequence of themost commonly usedmethods for common
use cases.

7. Provide sample programs demonstrating common use cases.

8. Provide a “Getting Started” guide showing how to develop a program for a common use cases.

9. Provide performance and tuning information.

10. Provide a contact in case developers have questions or need additional assistance.

1

Introduction

Best Practice 1: Followa
Standard Template orOutline
for ReferencePages
There is a commonly accepted baseline for API documentation. That baseline is a complete,
comprehensive, and accurate set of reference pages that documents every interface, method,
function, or resource.

Most APIs use a very similar template or organizational structure for API components, including
methods, functions, or resources. These categories of API elements each perform a single operation
or task, such as opening a file, starting an interactive session, and logging into a computer system.
C-type languages use the terms "method" or "function" interchangeably. The Java programming
language uses the term "method." Web service APIs use the term "resource." But all three names are
functionally the same and are documented inmuch the sameway. You should follow the standard
template or outline for organizing reference pages.

Note: In this white paper, the term "method" is used to generically refer to all three terms.

An example of an API reference page template for amethod is shown below.

Template for an API Reference Page

Method_Name
A brief description of what themethod does.

Syntax
Display the actual method call used in the code.

Description
More detailed information about themethod; information developers need to know to call themethod.

Best Practice 1: FollowaStandardTemplate or Outline for Reference Pages

2

Note: For all of the following sections, if the section doesn't apply to the specific method or has no
elements, such as no return value or has no relatedmethods, explicitly state that by using a term
such as "None" or "Not applicable." This tells developers that you didn't forget to put information in
those sections.

Parameters
List all of the parameters here, in the order they appear in the syntax. You can either use a pseudo-list
format as the following or put the information into a table, shown after the pseudo-list.

Parameter1 - data type

What the parameter does. Optional/required. Examples.

Parametern - data type

What the parameter does. Optional/required. Examples.

Listing parameters in a table format:

Parameter Optional / Required Description Data Type

parameter1

parameter2

parametern

Return Value
Value returned by themethod:

returnValue - data type

Describe the return value.

Examples
A short code snippet here, with explanation, showing use of this method.

Errors
List the errors that can be returned for this method, with the level of error and the recommended
workaround or solution.

3

Best Practice 1: FollowaStandardTemplate or Outline for Reference Pages

Notes
Any supplemental, “nice to know” information.

See Also
Cross-references to relatedmethods.

Sample API Reference Page
For a sample API reference page for the SessionLoginmethod, which shows the organization and
content discussed in this section, see "Appendix: Sample API Reference Page" on page 19.

Best Practice 1: FollowaStandardTemplate or Outline for Reference Pages

4

Best Practice 2: Usea Terse,
FactualWriting Style
Most of the well-established practices for technical writing also apply to documenting APIs:

l Write clearly in plain English.

l Be factual.

l Be consistent with your terminology.

But there are some significant differences in documenting APIs:

l Write very tersely. Developers do not like flowery prose.

l Sentence fragments are acceptable. For example, when you are describing what a specific
method does, it is acceptable and desirable to use a sentence fragment. For example, for a
sessionTermmethod, your brief description would read, "Ends a session and closes all open
files."

l Avoid adjectives and adverbs. Developers are very factual. They don't want to read how fast
something works, how easy it is to use, etc. Developers will quickly lose confidence and trust
in your documentation if you use adjectives and adverbs.

l Be alert for homegrown terms that are used by a specific developer or team of developers that
are not industry-standard. If you encounter a jargon-like term that you don't recognize, ask
your developer or team if that is a standard term in your industry. If it isn't, push to determine
the correct standard term. If it is a new term but your team insists it should be used, define it
the first time you use it in your documentation. (Optionally, consider creating a glossary where
you define all of the new terms used in your API.)

l Oftenmethod names are formed by concatenatingmany words, which leads to very long
terms. Accept these as is. Do NOTmake up your own terms, because you think the names
are too long or break awkwardly in printed or PDF output.

5

Best Practice 2:UseaTerse, FactualWriting Style

Best Practice 3: Provide
Complete Information About
EachAPIComponent
Let's look at each of these sections of the API template, in the order they should appear on the
reference pages.

Method_Name
TheMethod_Name should be your heading at the top of a reference page. Most API documentation
does not include "Method" after theMethod_Name. Eachmethod is documented starting on a new
page. This makes it easy for developers to view or print the complete reference information for a
single method. It is confusing if you start a new section for a new method partway through a page for
printed documentation. For online help, having each reference page as a separate topic is much
easier for developers to read and find the information they need.

Following theMethod_Name, provide a brief description of what themethod does. For example:

Logs into a previously created session, where a session is an interactive sequence of user requests
and system responses.

Syntax
In this section, you document the complete syntax for themethod, exactly as it is used in the code.
For example:

STATUS SessionLogin(
SESSION_HANDLE session,
const STRING username,
const STRING password,
UINT32 timeout);

The "STATUS" that starts the syntax is the status code returned by this method. Many methods
return a status code or value that can be used to determine what the program does next or some
alphanumeric value that will be used to calculate somemath result or data to be stored or otherwise
acted on.

Best Practice 3:ProvideComplete InformationAbout EachAPI Component

6

Next is themethod name, SessionLogin, followed by an open parenthesis. Then, all the parameters
preceded by their data types, separated by commas. The following table shows the relationship
between the parameter and its data type. You do not show the syntax this way in your
documentation.

Data Type Parameter

const STRING username

const STRING password

UINT32 timeout

The syntax is closed with a closing parenthesis followed by a semicolon. This is standard coding in
many programming languages.

Description
In this section, providemore detailed information about themethod. This should be essential
information. As a guideline, if 90% of the developers need to know this information or will find it
useful, include the information in this section. For example:

An application canmaintain multiple sessions. You can have up to 8 sessions per application. You
need to use the same API User name for each (you will get an ERR_USERNAME_NOT_VALID error
if you do not).

Parameters
In this section, list all the parameters, in the order they appear in the syntax. For example:

session - SESSION_HANDLE

A handle to the session.

username - STRING

The API User name defined in the TPM. The TPMmust have Topic entitlement rights (publish or
subscribe) associated with this API User name before you can publish or subscribe tomessages on
those Topics.

password - STRING

7

Best Practice 3:ProvideComplete InformationAbout EachAPI Component

The password for the API User in string format. The secure value will be put into the securityContext
structure.

timeout - UINT32

The length of time that a login will be attempted before failure. This value is in milliseconds. A timeout
of 0means the login attempt will never timeout, and will continue to retry to connect should the initial
connect attempt fail.

Return Value
In this section, if themethod returns a value, you document that value in the code and what the data
type is. Depending on the number of return values, youmight need to document all of the possible
return values. If themethod does not return a value, enter "None." For example:

STATUS - If the function succeeds, thenOK is returned; otherwise, one of the status codes listed in
the ERRORS section is returned.

Best Practice 3:ProvideComplete InformationAbout EachAPI Component

8

Examples
In this section, you provide a small code snippet that shows a typical use or call of the specific
method being documented. Developers often copy these code snippets into the code they are writing
and customize as needed for their application. For example:

returnCode = SessionLogin(sess, DFT_USERNAME, DFT_PASSWORD, 5000);

Errors
In this section, you list all possible error messages that can be returned by amethod, in alphabetical
order, with the recommended solution or workaround. For example:

ERR_NETWORK_WRITE – A generic network error. Check the client log for more information.

ERR_NULL_PASSWORD –You didn’t supply a password. Enter a password as described above
and re-run your application.

ERR_NULL_USERNAME –You didn’t supply a username. Enter a userName as described above
and re-run your application.

ERR_USER_NOT_LOGGED_IN – You attempted to use a session without logging in first.

Notes
In this section, you include any supplemental, "nice to know" information. This is information that
probably only will be used by 15% of the developers or used 15% of the time. For example:

Before calling SessionLogin, you will need your API User name and password.

When your application is finished processing all messages, call SessionTerm to end the established
session.

See Also
In this section, you provide hyperlinked cross-references to all of the relatedmethods for themethod
being documented. For example:

SessionLogin

SessionTerm

9

Best Practice 3:ProvideComplete InformationAbout EachAPI Component

Best Practice 4: Document All
ErrorMessages
You should list all possible error messages that can be returned by amethod, in alphabetical order.
Putting the error messages in alphabetical order makes it easy for developers to find the specific error
message of interest, especially if a method can returnmany error messages, which is not uncommon
in this area. This alsomakes it easier for you tomaintain the list and ensure you don’t have
duplicates, which leads to confusion. Developers might be able to find some of the error messages
returned for amethod in the source code, but that is all they canmine from the source code. Unless
an error message is intuitively obvious, such as ERR_NULL_PASSWORD, having the error
message doesn’t help them. You should describe what the error messagemeans and the level
(informational, error, fatal, severe, warning, etc.). It is very helpful if you describe what caused the
error and the recommended solution or workaround for the error. For example:

ERR_NETWORK_WRITE – A generic network error. Check the client log for more information.

ERR_NULL_PASSWORD –You didn’t supply a password. Enter a password as described above
and re-run your application.

Tip: Often an error message can be returned for multiple methods. If your authoring tool provides
snippets capability, consider making an error message that is returned for many methods into a
reusable snippet that you call as needed. This will makemaintenance of the description for an error
messagemuch easier.

Best Practice 4:DocumentAll Error Messages

10

Best Practice 5: ProvideWorking
Code Snippets for EachMethod
Developers love examples. They will copy these from your documentation, paste them into their
code, modify as needed, and continue working. So, it is important to provide working code snippets.
You do not need to have a complete working example, including all header information, included files,
etc., but the example should work when pasted into an existing program. These examples should
show typical or common use cases for themethod. You will likely need to work with your developers
to determine typical or common use cases. It is your responsibility to test code snippets given to you
by developers to ensure they will work when used in a working program. If you cannot get an example
to work, it is appropriate to ask the developer who provided it why it doesn’t work. And work with
him/her to correct the example or provide another example that does work. For example:

returnCode = SessionLogin(sess, DFT_USERNAME, DFT_PASSWORD, 5000);

11

Best Practice 5:ProvideWorkingCode Snippets for EachMethod

Best Practice 6: Provide
Flowcharts ShowingCommon
UseCases
You should provide flowcharts showing the sequence of themost commonly usedmethods for
common use cases.

APIs often havemany methods in them, having several hundredmethods is common. However, the
rule that 85% of your users will only use 15% of your product applies to APIs as well. The challenge
for API users is to determine whichmethods need to be used all or most of the time vs. which are only
used occasionally or rarely. One way of showing themost commonly usedmethods is to provide
flowcharts for themost common use cases, showing themethods used in those use cases and the
order they should be called.

For example, the following flowchart from an API documentation set shows how to log into a system:

Best Practice 6:Provide Flowcharts Showing CommonUseCases

12

This flowchart is very helpful to developers, because it shows the requiredmethods to call to log into
a system and what order to call them, as well as some optional methods that might be helpful. Note
the brief but concise descriptions of what eachmethod does or what operation is performed at each
step.

13

Best Practice 6:Provide Flowcharts Showing CommonUseCases

Best Practice 7: Provide Sample
ProgramsDemonstrating
CommonUseCases
Developers love to see sample programs included with APIs. Developers use them to experiment
and see how your API works without having to learn your API in detail. There are several
considerations you need to address with your sample programs tomake them useful to your
customers:

l Sample programs should show common or typical use cases for your API.

l They should be complete and run with no errors or warnings.

l You should provide readme files explaining what the program does, how to run it, any
necessary input data, and expected results.

Best Practice 7:Provide Sample ProgramsDemonstratingCommonUseCases

14

Best Practice 8: Providea
“Getting Started”Guide
It is very helpful to identify and document how to program a common use case as a "Getting
Started Guide" for new users of your API. This solves the problem of information overload with large
APIs. Also, developers prefer to copy and paste existing code andmodify it for their use, reusing as
much as possible. The challenge for the developers and writers creating an API is to know how users
might use the API, what business problems your users are trying to solve, and what some typical use
cases are for your users. It is sometimes helpful to talk to staff in marketing or product management,
who often havemore contact with users than in-house development teams.

The following example shows the outline for a "Getting Started Guide" that shows developers how to
speech-enable an application:

Quick Start: Creating a Simple Application

1. Overview - Explains what the Quick Start covers.

2. To speech-enable a simple application - Provides detailed, specific steps to write the code
needed to speech-enable an application.

3. To add voice commands to the simple application - Provides detailed, specific steps to write
the code needed to add voice commands to the application.

15

Best Practice 8:Providea“Getting Started”Guide

Best Practice 9: Provide
Performanceand Tuning
Information
Many APIs are used to process large amounts of data at high speeds. Developers often want to "tune
up" the performance of your API beyond your out-of-the-box performance. Even if you provide
parameters and switches to customize various performancemetrics, it is often hard and time-
consuming for developers to try the various combinations of parameters, switches, and ranges of
valid values. If your product is tunable, at aminimum, you should provide the following information for
all tuning parameters and switches:

l Parameter or switch name, an explanation of the parameter or switch, the range of valid
values, and default values.

l What effect the default value has and why that value was chosen.

l Guidance on setting the default value to other values in the valid value range according to your
specific needs. For example, if you needmore data throughput, change parameter x to a value
such as the following: n. Conversely, if you need less or more latency, change the value of
parameter x to the following:m. Developers can and should experiment around the
recommended setting for a specific scenario once they set the value to your recommended
setting. But your recommendation, based on your own testing in-house, saves your users from
spending a lot of unnecessary time guessing what values to try to achieve a desired result.

For example, youmight have a PUB_BW_LIMIT (publisher maximum bandwidth), tuning parameter
with the following description:

PUB_BW_LIMIT - Themaximum bandwidth, in Mbps, of the publisher. The default value is 100 (100
Mbps). Theminimum value is 0, which disables the limit. Use this parameter if you noticed (or your
sys-admin told you) that your publisher was flooding the network. Youmight use it to limit a
particularly fast publisher to half the link (500) so that it doesn’t overwhelm the subscriber.

You should not use increments smaller than 50.

Best Practice 9:Provide PerformanceandTuning Information

16

Best Practice 10: Providea
Contact Person for Your API
Though it is common to have a Technical Support department, whether you work in a large or small
company and provide ameans of submitting questions about using your company's products by
email, telephone, or someweb-based interface, APIs present special challenges to this practice:

l Your users are probably software developers themselves, and very computer-literate. Their
questions might overwhelm tech support people, whomight be inexperienced or don't have
deep programming backgrounds.

l Often, developers need to submit log files, screenshots of the run of an application, or other
information that is cumbersome at best to communicate by telephone.

Set up a special email account for your API that is directed either to a high-level technical support
person who is fluent with your API(s) or a developer on your team who is designated to respond to
customer queries. Instead of the common pattern of "support@yourCompany.com", create an
account, such as "nameOfYourAPI_support@yourCompany.com" and have all queries go to the
designated technical support person or designated developer.

If you are documenting internal APIs for internal use only, consider specifying the actual developer
who is assigned to support internal users of that API. In this case, your email link would go directly to
that developer, Jane_Developer@yourCompany.com.

Publish a short topic named something like "Technical Support" that you include in your
documentation after your content topics/chapters. Suggested content:

For more information or help on using this API, contact Jane_Developer@yourCompany.com.

Providing an email link to a knowledgeable technical support or designated API developer benefits
both your company and customers. Your company resolves customer issues faster, thus saving time
andmoney. Your customers get their questions resolved faster andmore accurately. Both your
company and customer get increased customer satisfaction.

17

Best Practice 10:ProvideaContact Person for Your API

Summary
To review the ten best practices for API documentation:

1. Use a standard template or outline to organize reference pages.

2. Use a terse, factual writing style. Sentence fragments are desirable. Avoid adjectives and
adverbs.

3. Document every API component completely.

4. List all error messages alphabetically, specify the level of themessage, and provide
suggested workarounds and solutions.

5. Provide a working code snippet that shows a common use for eachmethod.

6. Show the sequence of themost commonly usedmethods for common use cases.

7. Provide full, working sample programs that demonstrate common use cases for your API.

8. Develop some common use cases and provide a “Getting Started” guide that documents how
to program for them.

9. Provide performance and tuning information with recommended adjustments to default values,
to improve performance for unusual scenarios.

10. Designate a contact person, who is fluent with your API, as a resource for your users, not just
a generic "tech_support@xyz.com" mailing address.

By implementing these best practices, you will provide documentation that not only meets the needs
and expectations of your users but will substantially help them get started quickly in learning and
using your API to solve their technical challenges.

Summary

18

Appendix: Sample
API ReferencePage

SessionLogin
Logs into a previously created session, where a session is an interactive sequence of user requests
and system responses.

Syntax
STATUS SessionLogin(

SESSION_HANDLE session,
const STRING username,
const STRING password,
UINT32 timeout);

Description
An application canmaintain multiple sessions. You can have up to 8 sessions per application. You
need to use the same API User name for each (you will get an ERR_USERNAME_NOT_VALID error
if you do not).

Parameters
session - SESSION_HANDLE

Input. A handle to the session.

username - STRING

Input. The API User name defined in the host system.

password - STRING

Input. The password for the API User in string format.

timeout - UINT32

19

Appendix: SampleAPI Reference Page

Input. The length of time that a login will be attempted before failure. This value is in milliseconds. A
timeout of 0means the login attempt will never timeout, and will continue to retry to connect should
the initial connect attempt fail.

Return Value
STATUS - If the function succeeds, thenOK is returned, otherwise one of the status codes listed in
the ERRORS section is returned.

Errors
ERR_BAD_NETWORK_CONFIG – Error setting up the SSL channel.

ERR_NULL_PASSWORD –You didn’t supply a password. Enter a password as described above
and re-run your application.

ERR_NULL_USERNAME –You didn’t supply a username. Enter a userName as described above
and re-run your application.

ERR_USER_NOT_LOGGED_IN – You attempted to use a session without logging in first.

Notes
Before calling SessionLogin, you will need your API User name and password.

When your application is finished processing all messages, call SessionTerm to end the established
session.

Example
returnCode = SessionLogin(sess, DFT_USERNAME, DFT_PASSWORD,5000);

See Also
SessionLogin

SessionTerm

Appendix: SampleAPI Reference Page

20

About theAuthor
EdMarshall is an independent consultant technical writer and the sole proprietor of Marshall
Documentation Consulting, with over 28 years of experience. He specializes in technical
documentation for developers, including APIs (application programming interfaces), SDKs
(software developer’s kits), Web Services products, etc. Over his career, he has developed
expertise in using tools to “let the computer do the work,” such as advanced tools for editing
files, comparing files, and searching and replacing text. He has givenmany presentations at
local STC chapters and Summits, theWritersUA conferences, Information Development World,
the TEKOM trade show in Germany (October 2012) at the organization’s invitation, andmany other
events. He is a CertifiedMadCap Advanced Developer (MAD) for MadCap Flare. His web site is
www.MarshallDocumentationServices.com. He can be reached at ed.marshall@verizon.net,
on LinkedIn, and on Twitter@EdMarshall.

21

About theAuthor

http://www.marshalldocumentationservices.com/
mailto:ed.marshall@verizon.net
http://www.linkedin.com/pub/ed-marshall/0/501/898

Looking for
More Resources?

Browse our library of webinars, videos,
white papers and more.

Learn more at madcapsoftware.com/resources

https://www.madcapsoftware.com/resources/

	The Definitive Guide to Creating API Documentation
	Introduction
	Best Practice 1: Follow a Standard Template or Outline for Reference Pages
	Best Practice 2: Use a Terse, Factual Writing Style
	Best Practice 3: Provide Complete Information About Each API Component
	Best Practice 4: Document All Error Messages
	Best Practice 5: Provide Working Code Snippets for Each Method
	Best Practice 6: Provide Flowcharts Showing Common Use Cases
	Best Practice 7: Provide Sample Programs Demonstrating Common Use Cases
	Best Practice 8: Provide a “Getting Started” Guide
	Best Practice 9: Provide Performance and Tuning Information
	Best Practice 10: Provide a Contact Person for Your API
	Summary
	Appendix: Sample API Reference Page
	About the Author

